Preprints
https://doi.org/10.5194/egusphere-2024-1946
https://doi.org/10.5194/egusphere-2024-1946
09 Jul 2024
 | 09 Jul 2024

Weak surface temperature effects of recent reductions in shipping SO2 emissions, with quantification confounded by internal variability

Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, and Bjørn H. Samset

Abstract. In 2020 the International Maritime Organization (IMO) implemented strict new regulations on the emissions of sulphate aerosol from the world's shipping fleet. This can be expected to lead to a reduction in aerosol-driven cooling, unmasking a portion of greenhouse gas warming. The magnitude of the effect is uncertain, however, due to the large remaining uncertainties in the climate response to aerosols. Here, we investigate this question using an 18-member ensemble of fully coupled climate simulations evenly sampling key modes of climate variability with the NCAR CESM2 model. We show that while there is a clear physical response of the climate system to the IMO regulations, including a surface temperature increase, we do not find global mean temperature influence that is significantly different from zero. The 20-year average global mean warming for 2020–2040 is +0.03 °C, with a 5–95 % confidence range of [-0.09, 0.19], reflecting the weakness of the perturbation relative to internal variability. We do, however, find a robust, non-zero regional temperature response in part of the North Atlantic. We also find that the maximum annual-mean ensemble-mean warming occurs around a decade after the perturbation in 2029, which means that the IMO regulations have likely had very limited influence on observed global warming to date. We further discuss our results in light of other, recent publications that have reached different conclusions. Overall, while the IMO regulations may contribute up to at 0.16 °C [-0.17, 0.52] to the global mean surface temperature in individual years during this decade, consistent with some early studies, such a response is unlikely to have been discernible above internal variability by the end of 2023 and is in fact consistent with zero throughout the 2020–2040 period.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics. The peer-review process was guided by an independent editor, and the authors also have no other competing interests to declare.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

23 Apr 2025
Surface temperature effects of recent reductions in shipping SO2 emissions are within internal variability
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025,https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, and Bjørn H. Samset

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1946', Anonymous Referee #1, 29 Jul 2024
  • RC2: 'Comment on egusphere-2024-1946', Anonymous Referee #2, 08 Oct 2024
  • AC1: 'Reply to reviews of egusphere-2024-1946', Duncan Watson-Parris, 28 Nov 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1946', Anonymous Referee #1, 29 Jul 2024
  • RC2: 'Comment on egusphere-2024-1946', Anonymous Referee #2, 08 Oct 2024
  • AC1: 'Reply to reviews of egusphere-2024-1946', Duncan Watson-Parris, 28 Nov 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Duncan Watson-Parris on behalf of the Authors (28 Nov 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (19 Dec 2024) by Ewa Bednarz
AR by Duncan Watson-Parris on behalf of the Authors (03 Feb 2025)

Journal article(s) based on this preprint

23 Apr 2025
Surface temperature effects of recent reductions in shipping SO2 emissions are within internal variability
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025,https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, and Bjørn H. Samset
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, and Bjørn H. Samset

Viewed

Total article views: 1,521 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
960 312 249 1,521 38 40
  • HTML: 960
  • PDF: 312
  • XML: 249
  • Total: 1,521
  • BibTeX: 38
  • EndNote: 40
Views and downloads (calculated since 09 Jul 2024)
Cumulative views and downloads (calculated since 09 Jul 2024)

Viewed (geographical distribution)

Total article views: 1,503 (including HTML, PDF, and XML) Thereof 1,503 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 23 Apr 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that while there is regional warming, the global 2020–2040 temperature rise is only +0.03°C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Share