Preprints
https://doi.org/10.5194/egusphere-2024-1805
https://doi.org/10.5194/egusphere-2024-1805
27 Jun 2024
 | 27 Jun 2024

Leveraging the satellite-based climate data record CLARA-A3 to understand trends and climate regimes relevant for solar energy applications over Europe

Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson

Abstract. Efficient transitioning to renewable energy requires fundamental understanding of the past and future climate change. This is particularly true in the case of solar energy since the surface incoming solar radiation (SIS) is regulated heavily by atmospheric essential climate variables (ECVs) such as aerosols and clouds, and by their long-term trends. Given the complexity of the interactions and feedbacks in the Earth system, even small changes in ECVs could have large direct and indirect effects on SIS. The net efficacy of the designed solar energy systems therefore depends on how well we account for the role of ECVs in modulating SIS at decadal scales. In this study, by leveraging the satellite-based climate data record CLARA-A3, we investigate the recent trends in SIS and cloud properties over Europe during the 1982–2020 period. Further, we derive emerging climate regimes that are relevant for solar energy applications. Results show a large-scale increase in SIS in spring and early summer over Europe, particularly noticeable in April and June. The corresponding trends in cloud fraction and cloud optical thickness, and their correlation with SIS suggest an increasingly important role of clouds in defining the favorable and unfavorable climate regimes for solar energy applications. We note also a strong spatio-temporal variability in trends and correlations. The results provide valuable metrics for the evaluation of climate models that have a dynamically integrated solar energy component.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

21 Jul 2025
| Highlight paper
Leveraging the satellite-based climate data record CLARA-A3 to understand the climatic trend regimes relevant for solar energy applications over Europe
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
Earth Syst. Dynam., 16, 1169–1182, https://doi.org/10.5194/esd-16-1169-2025,https://doi.org/10.5194/esd-16-1169-2025, 2025
Short summary Chief editor
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1805', Anonymous Referee #1, 14 Dec 2024
  • RC2: 'Comment on egusphere-2024-1805', Anonymous Referee #2, 10 Mar 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1805', Anonymous Referee #1, 14 Dec 2024
  • RC2: 'Comment on egusphere-2024-1805', Anonymous Referee #2, 10 Mar 2025

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (05 May 2025) by Daniel Kirk-Davidoff
AR by Abhay Devasthale on behalf of the Authors (05 May 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (06 May 2025) by Daniel Kirk-Davidoff
AR by Abhay Devasthale on behalf of the Authors (07 May 2025)

Journal article(s) based on this preprint

21 Jul 2025
| Highlight paper
Leveraging the satellite-based climate data record CLARA-A3 to understand the climatic trend regimes relevant for solar energy applications over Europe
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
Earth Syst. Dynam., 16, 1169–1182, https://doi.org/10.5194/esd-16-1169-2025,https://doi.org/10.5194/esd-16-1169-2025, 2025
Short summary Chief editor
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson

Viewed

Total article views: 569 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
383 154 32 569 44 53
  • HTML: 383
  • PDF: 154
  • XML: 32
  • Total: 569
  • BibTeX: 44
  • EndNote: 53
Views and downloads (calculated since 27 Jun 2024)
Cumulative views and downloads (calculated since 27 Jun 2024)

Viewed (geographical distribution)

Total article views: 540 (including HTML, PDF, and XML) Thereof 540 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 21 Jul 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Using the satellite-based climate data record CLARA-A3 spanning 1982–2020 and ERA5 reanalysis, we present climate regimes that are favourable or unfavourable for solar energy applications. We show that the favourable climate regimes are emerging over much of Europe during spring and early summer for solar energy exploitation.
Share