Preprints
https://doi.org/10.5194/egusphere-2024-1648
https://doi.org/10.5194/egusphere-2024-1648
14 Jun 2024
 | 14 Jun 2024

Quantitative reconstruction of past monsoon precipitation based on tetraether membrane lipids in Chinese loess

Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse

Abstract. Variations in the oxygen isotope composition (δ18O) of cave speleothems and numerous proxy records from loess-paleosol sequences have revealed past variations in East Asian monsoon (EAM) intensity. However, challenges persist in reconstructing precipitation changes quantitatively. Here, we use the positive relationship between the degree of cyclization (DC) of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in modern surface soils from the Chinese loess Plateau (CLP) and mean annual precipitation (MAP) to quantify past monsoon precipitation changes on the CLP. We present a new ~130,000-year long DC-based MAP record for the Yuanbao section on the western edge of CLP, which closely tracks the orbital- and millennial-scale variations in both the speleothem δ18O record and the hydrogen isotope composition of plant waxes (δ2Hwax) from the same section. Combing our new data with existing brGDGT records from other CLP sites reveals a spatial gradient in MAP that is most pronounced during glacials, when the western CLP experiences more arid conditions and receives up to ~250 mm less precipitation than in the southeast, whereas MAP is ~850 mm across the CLP during the Holocene optimum. Furthermore, the DC records show that precipitation amount on the CLP varies at the precession as well as obliquity scale, as opposed to the primarily precession scale variations in speleothem δ18O and δ2Hwax at Yuanbao, and the 100-kyr cycle in other loess proxies such as magnetic susceptibility, which rather indicates the relative intensity of the EAM. At the precession scale, the DC record is in phase with δ2Hwax from same section as well as the speleothem δ18O record, which supports the hypothesis that monsoon precipitation is driven by northern hemisphere summer insolation.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

03 Feb 2025
Towards quantitative reconstruction of past monsoon precipitation based on tetraether membrane lipids in Chinese loess
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
Clim. Past, 21, 343–355, https://doi.org/10.5194/cp-21-343-2025,https://doi.org/10.5194/cp-21-343-2025, 2025
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese...
Share