Preprints
https://doi.org/10.5194/egusphere-2024-1506
https://doi.org/10.5194/egusphere-2024-1506
11 Jun 2024
 | 11 Jun 2024

Temporal dynamic vulnerability – Impact of antecedent events on residential building losses to wind storm events in Germany

Andreas Trojand, Henning Rust, and Uwe Ulbrich

Abstract. Severe winter storm events are one of Central Europe's most damaging natural hazards, therefore particularly in focus for disaster risk management. One key factor for risk is vulnerability. Risk assessments often assume vulnerability as constant. This is, however, not always a justifiable assumption. This work seeks and quantifies a potential dynamic of vulnerability for residential buildings in Germany. A likely factor affecting the dynamics of vulnerability is the hazard itself. As an extreme events may destroy the most vulnerable elements, it is likely that the subsequent rebuilding or repair will reduce their vulnerability for following events. Therefore, the intensity of the previous events and the resulting damage can be assumed to be a decisive factor in changing vulnerability. A second important factor is the time period between the previous and current event. If the next event occurs during the reconstruction phase, vulnerability might be higher than when the reconstruction phase is completed.

We analyze the role of previous storm events for the vulnerability of residential buildings. For this purpose, generalized additive models are implemented to estimate vulnerability as a function of the intensity of the previous event and the time interval between the events. The damage is extracted from a 23-year-long data set of the daily storm and hail losses for insured residential buildings in Germany on the administrative district level provided by the German Insurance Association, and the hazard component is described by the daily maximum wind load calculated from the ERA5 reanalysis. The results show a negative relationship between the previous event's intensity and the current event's damage. The duration between two events shows a significant reduction of the damage for events occurring one or more winter seasons ago compared to events occurring within the same season. On a daily scale, the first five to ten days are especially crucial for vulnerability reduction.

Competing interests: One of the co-author is a member of the editorial board of Natural Hazards and Earth System Sciences.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
The study investigates how the intensity of previous windstorm events and the time between two...
Share