Preprints
https://doi.org/10.5194/egusphere-2024-1498
https://doi.org/10.5194/egusphere-2024-1498
23 May 2024
 | 23 May 2024

High-resolution analyses of concentrations and sizes of black carbon particles deposited on northwest Greenland over the past 350 years – Part 2: Seasonal and temporal trends in black carbon originated from fossil fuel combustion and biomass burning

Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, and Teruo Aoki

Abstract. The roles and impacts of black carbon (BC), an important aerosol species affecting Earth’s radiation budget, are not well understood owing to lack of accurate long-term observations. To study the temporal changes in BC since the pre-industrial period, we analysed BC in an ice core drilled in northwest Greenland. Using an improved technique for BC measurement and a continuous flow analysis system, we obtained accurate and high temporal resolution records of BC particle size and mass/number concentrations for the past 350 years. Number and mass concentrations, which both started to increase in the 1870s associated with inflow of anthropogenically derived BC, reached their maxima in the 1910s–1920s and then subsequently decreased. On the basis of backward trajectory analyses, we found that North America was the dominant source region of the anthropogenic BC in the ice core. The increase in anthropogenic BC shifted the annual concentration peaks of BC from summer to winter–early spring. After BC concentrations diminished to pre-industrial levels, the annual peak concentration of BC returned to the summer. We found that anthropogenic BC particles were larger than biomass burning BC particles. By separating the BC in winter and summer, we reconstructed the temporal variations in BC that originated from biomass burning, including the period with large anthropogenic input. The BC that originated from biomass burning showed no trend of increase until the early 2000s. Finally, possible albedo reductions due to BC are discussed. Our new data provide key information for validating aerosol and climate models, thereby supporting improved projections of future climate and environment.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

17 Jan 2025
High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025,https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Monthly records spanning 350 years from a Greenland ice core reveal trends in black carbon (BC)...
Share