Preprints
https://doi.org/10.5194/egusphere-2024-1437
https://doi.org/10.5194/egusphere-2024-1437
02 Jul 2024
 | 02 Jul 2024

Modeling of PAHs From Global to Regional Scales: Model Development and Investigation of Health Risks from 2013 to 2018 in China

Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang

Abstract. Polycyclic aromatic hydrocarbons (PAHs) significantly impact human health due to their persistence, toxicity, and potential carcinogenicity. Their global distribution and regional changes caused by emission changes, especially over areas in developing countries, remain to be understood along with their health impacts. This study implemented a PAH module in the global-regional nested Atmospheric Aerosol and Chemistry Model (IAP-AACM) to investigate the global distribution of PAHs and the change in their health risks from 2013 to 2018 in China. An evaluation against observations showed that the model could capture well the spatial distribution and seasonal variation of Benzo[a]pyrene (BaP), the typical indicator species of PAHs. At a global scale, the annual mean concentrations are highest in China, followed by Europe and India, with high values exceeding the target values of 1 ng m-3 over some areas. Compared with 2013, the concentration of BaP in China decreased in 2018 due to emission reductions, whereas it increased in India and Southern Africa. However, the decline is much smaller than for PM2.5 during the same period. The concentration of BaP decreased by 8.5 % in Beijing-Tianjin-Hebei (BTH) and 9.4 % in the Yangtze River Delta (YRD). It even increased over areas in the Sichuan Basin due to changes in meteorological conditions. The total incremental lifetime cancer risk (ILCR) posed by BaP only showed a slight decrease in 2018 and the population in East China still faced significant potential health risks. The results indicate that strict additional control measures should be taken to reduce the pollution and health risks of PAHs effectively. The study also highlights the importance of considering changes in meteorological conditions when evaluating emission changes from concentration monitoring.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

18 Dec 2024
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional...
Share