Preprints
https://doi.org/10.5194/egusphere-2024-1344
https://doi.org/10.5194/egusphere-2024-1344
07 May 2024
 | 07 May 2024

Vertical Profiles of Liquid Water Content in fog layers during the SOFOG3D experiment

Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli

Abstract. Observations collected during the SOuth west FOGs 3D experiment for processes study (SOFOG3D) field campaign are examined to document vertical profile of microphysical and thermodynamic properties of fog layers. In situ measurements collected under a tethered balloon provide 140 vertical profiles of liquid water content (LWC) from an adapted cloud droplet probe (CDP), which allow an exhaustive analysis of the life cycle of 8 thin fogs (thickness < 50 m) and 4 developed layers. We estimate thin-to-thick transition time from remote sensing instruments (microwave radiometer and Doppler cloud radar) and surface measurements, by using thresholds for longwave radiation flux, turbulent kinetic energy, vertical temperature gradient, fog top height and liquid water path (LWP) values. We found that a LWP threshold value of 15 g.m−2 is more suited for the thick fogs sampled at the super-site. CDP data are used to compute the equivalent fog adiabaticity from closure (αclosureeq) and compare to value derived from remote sensing instruments, 2-m height visibility, and an one-column conceptual model of adiabatic continental fog assuming that LWC linearly increases with height. The comparison of αclosureeq shows a large variability that results mainly from the parameterization used to estimate LWC at ground, but their evolution as a function of the fog thickness follows the same trend. We found larger negative values of αclosureeq for thin layers, associated to low LWP values. CDP data reveal that reverse trend of LWC profile (LWC being maximal at the ground and decreasing with altitude) are ubiquitous in optically thin fogs, while quasi-adiabatic features with increasing LWC values with altitude are mainly observed in well-mixed optically thick fogs. We investigate the actual fog adiabaticity and lapse rate fraction by using linear regressions to best fit the vertical profiles of LWC and temperature, respectively. This analysis highlights that reverse LWC profiles, when stable temperature conditions exist during the optically thin phase of fogs, evolve towards quasi-adiabatic features with slightly unstable temperature lapse rate, when fogs become optically thick. We also found that LWC at ground is higher during the thin phase and significantly decreases as the profile is changing from reverse to increasing with height. But this trend could be balanced when collision-coalescence and sedimentation processes redistribute the LWC through the fog layer from the top to the ground. This study provides new insights on the evolution of LWC profile during the fog life cycle, that would help to constrain numerical simulations.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

30 Jun 2025
Vertical profiles of liquid water content in fog layers during the SOFOG3D experiment
Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli
Atmos. Chem. Phys., 25, 6539–6573, https://doi.org/10.5194/acp-25-6539-2025,https://doi.org/10.5194/acp-25-6539-2025, 2025
Short summary
Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1344', Anonymous Referee #1, 05 Jun 2024
  • RC2: 'Comment on egusphere-2024-1344', Anonymous Referee #2, 10 Jun 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1344', Anonymous Referee #1, 05 Jun 2024
  • RC2: 'Comment on egusphere-2024-1344', Anonymous Referee #2, 10 Jun 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Théophane Costabloz on behalf of the Authors (28 Jan 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (30 Jan 2025) by Matthias Tesche
ED: Publish subject to minor revisions (review by editor) (26 Feb 2025) by Matthias Tesche
AR by Théophane Costabloz on behalf of the Authors (06 Mar 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (10 Mar 2025) by Matthias Tesche
AR by Théophane Costabloz on behalf of the Authors (17 Mar 2025)  Author's response   Manuscript 

Journal article(s) based on this preprint

30 Jun 2025
Vertical profiles of liquid water content in fog layers during the SOFOG3D experiment
Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli
Atmos. Chem. Phys., 25, 6539–6573, https://doi.org/10.5194/acp-25-6539-2025,https://doi.org/10.5194/acp-25-6539-2025, 2025
Short summary
Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli
Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli

Viewed

Total article views: 744 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
456 242 46 744 54 55
  • HTML: 456
  • PDF: 242
  • XML: 46
  • Total: 744
  • BibTeX: 54
  • EndNote: 55
Views and downloads (calculated since 07 May 2024)
Cumulative views and downloads (calculated since 07 May 2024)

Viewed (geographical distribution)

Total article views: 745 (including HTML, PDF, and XML) Thereof 745 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 30 Jun 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This study documents vertical profiles of liquid water content (LWC) in fogs from in situ measurements collected during the SOFOG3D field campaign in 2019–2020. The analysis of 140 vertical profiles reveals a reverse trend in LWC, maximum values at ground decreasing with height, during stable conditions in optically thin fogs, evolving towards quasi-adiabatic characteristics when fogs become thick. These results offer new perspectives for better constraining fog numerical simulations.
Share