Preprints
https://doi.org/10.5194/egusphere-2024-1308
https://doi.org/10.5194/egusphere-2024-1308
07 May 2024
 | 07 May 2024

Integrating palaeoecology and dendrochronology to explore the impact of climate and forest management on a peatland in Scots pine monoculture

Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz

Abstract. Assessing the scale, rate and consequences of climate change, manifested primarily by rising average air temperatures and altered precipitation regimes, is a critical challenge in contemporary scientific research. These changes are accompanied by various anomalies and extreme events that negatively impact ecosystems worldwide. Monoculture forests, including Scots pine (Pinus sylvestris L.) monocultures, are particularly vulnerable to these changes due to their homogeneous structure and simplified ecosystem linkages compared to mixed forests, making them more sensitive to extreme events such as insect outbreaks, droughts, fires and strong winds. In the context of global warming, forest fires are becoming extremely dangerous, and the risk of their occurrence increases as average temperatures rise. The situation becomes even more dramatic when fire enters areas of peatlands, as these ecosystems effectively withdraw carbon from the rapid carbon cycle and store it for up to thousands of years. Consequently, peatlands become emitters of carbon dioxide into the atmosphere.

In this study, we aim to trace the last 300 years of historical development of a peatland situated in a Scots pine monoculture. Our focus is on the Okoniny peatland located within the Tuchola Pinewoods in northern Poland, one of the country's largest forest complexes. We delved into the phase when the peatland's surroundings transitioned from a mixed forest to a pine monoculture and investigated the impact of changes in forest management on the peatland vegetation and hydrology. Our reconstructions are based on a multi-proxy approach using: pollen, plant macrofossils, micro- and macrocharcoal and testate amoebae. We combine the peatland palaeoecological record with the dendrochronology of Pinus sylvestris to compare the response of these two archives. Our results show that a change in forest management and progressive climate warming affected the development of the peatland. We note an increase in acidity over the analyzed period and a decrease in the water table over the last few decades that led to the lake-peatland transition. These changes progressed with the strongest agricultural activity in the area in the 19th century. However, the 20th century was a period of continuous decline in agriculture and an increase in the dominance of Scots pine in the landscape as the effect of afforestation. Dendroclimatic data indicate a negative effect of temperature on Scots pine and pressure from summer rainfall deficiency. Additional remote sensing analysis, using hyperspectral, LiDAR and thermal airborne data, provided information about the current condition of the peatland vegetation. With the application of spectral indices and the analysis of land surface temperature, spatial variations in peatland drying have been identified. Considering the context of forest management and the protection of valuable ecosystems in monocultural forests, the conclusions are relevant for peatland and forest ecology, palaeoecology and forestry.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

19 Nov 2024
Assessing the impact of forest management and climate on a peatland under Scots pine monoculture using a multidisciplinary approach
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz
Biogeosciences, 21, 5143–5172, https://doi.org/10.5194/bg-21-5143-2024,https://doi.org/10.5194/bg-21-5143-2024, 2024
Short summary
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1308', Dmitri Mauquoy, 21 May 2024
    • AC1: 'Reply on RC1', Mariusz Bąk, 30 Jul 2024
  • RC2: 'Comment on egusphere-2024-1308', Anonymous Referee #2, 09 Jul 2024
    • AC2: 'Reply on RC2', Mariusz Bąk, 30 Jul 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1308', Dmitri Mauquoy, 21 May 2024
    • AC1: 'Reply on RC1', Mariusz Bąk, 30 Jul 2024
  • RC2: 'Comment on egusphere-2024-1308', Anonymous Referee #2, 09 Jul 2024
    • AC2: 'Reply on RC2', Mariusz Bąk, 30 Jul 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (02 Aug 2024) by Petr Kuneš
AR by Mariusz Bąk on behalf of the Authors (19 Aug 2024)  Author's response   Author's tracked changes 
EF by Polina Shvedko (26 Aug 2024)  Manuscript 
ED: Referee Nomination & Report Request started (29 Aug 2024) by Petr Kuneš
RR by Anonymous Referee #1 (29 Aug 2024)
RR by Anonymous Referee #2 (15 Sep 2024)
ED: Publish subject to minor revisions (review by editor) (16 Sep 2024) by Petr Kuneš
AR by Mariusz Bąk on behalf of the Authors (16 Sep 2024)  Author's response   Author's tracked changes 
EF by Sarah Buchmann (19 Sep 2024)  Manuscript 
ED: Publish as is (25 Sep 2024) by Petr Kuneš
AR by Mariusz Bąk on behalf of the Authors (25 Sep 2024)

Journal article(s) based on this preprint

19 Nov 2024
Assessing the impact of forest management and climate on a peatland under Scots pine monoculture using a multidisciplinary approach
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz
Biogeosciences, 21, 5143–5172, https://doi.org/10.5194/bg-21-5143-2024,https://doi.org/10.5194/bg-21-5143-2024, 2024
Short summary
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz

Viewed

Total article views: 618 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
441 128 49 618 18 27
  • HTML: 441
  • PDF: 128
  • XML: 49
  • Total: 618
  • BibTeX: 18
  • EndNote: 27
Views and downloads (calculated since 07 May 2024)
Cumulative views and downloads (calculated since 07 May 2024)

Viewed (geographical distribution)

Total article views: 677 (including HTML, PDF, and XML) Thereof 677 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 19 Nov 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The study combines paleoecological, dendrochronological, and remote sensing data to detect the impact of forest management and climate change on the peatland. Due to these changes, both the peatland and the pine monoculture surrounding it have become extremely vulnerable to water deficits, as well as susceptible to various types of disturbance, such as fires and pest gradations. As a result of forest management, there has also been a complete change in the vegetation composition of the peatland.