Preprints
https://doi.org/10.5194/egusphere-2024-13
https://doi.org/10.5194/egusphere-2024-13
25 Jan 2024
 | 25 Jan 2024

Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban region aloft: insights from tower-based online gradient measurements

Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao

Abstract. Formic acid is the most abundant organic acid in the troposphere and has significant environmental and climatic impacts. Isocyanic acid poses severe threats to human health and could be formed through the degradation of formic acid. However, the lack of vertical observation information has strongly limited the understanding of their sources, particularly in urban regions with complex pollutant emissions. To address this issue, continuous (27 days) vertical gradient measurements (five heights between 5–320 m) of formic and isocyanic acids were made based on a tall tower in Beijing, China in summer of 2021. Results show that the respective mean mixing ratios of formic and isocyanic acids were 1.3±1.3 ppbv and 0.28±0.16 ppbv at 5 m and were 2.1±1.9 ppbv and 0.43±0.21 ppbv at 320 m during the campaign. The mixing ratios of formic and isocyanic acids were substantially enhanced in daytime and correlated with the diurnal change of ozone. Upon sunrise, the mixing ratios of formic and isocyanic acids at different heights simultaneously increased even in the residual layer. In addition, positive vertical gradients were observed for formic and isocyanic acids throughout the day. The afternoon peaks and positive vertical gradients of formic and isocyanic acids in nighttime indicate their dominant contributions from photochemical formations. Furthermore, the positive vertical gradients of formic and isocyanic acids in daytime imply the enhancement of their secondary formation in urban regions aloft, predominantly due to the enhancements of oxygenated volatile organic compounds. The formation pathway of isocyanic acid through HCOOH-CH3NO-HNCO was enhanced with height but only accounted for a tiny fraction of its ambient abundance. The abundance and source contributions of formic and isocyanic acids in the atmospheric boundary layer may be highly underestimated when being derived from their ground-level measurements. With the aid of numerical modeling techniques, future studies could further identify key precursors that drive the rapid formation of formic and isocyanic acids, and quantitatively assess the impacts of the enhanced formation of the two acids aloft on their budgets at ground level.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

14 Jun 2024
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024,https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m...
Share