Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2024-1210
https://doi.org/10.5194/egusphere-2024-1210
25 Apr 2024
 | 25 Apr 2024

Investigating Carbonyl Compounds above the Amazon Rainforest using PTR-ToF-MS with NO+ Chemical Ionization

Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams

Abstract. The photochemistry of carbonyl compounds significantly influences tropospheric chemical composition by altering the local oxidative capacity, free radical abundance in the upper troposphere, and formation of ozone, PAN, and secondary organic aerosol particles. Carbonyl compounds can be emitted directly from the biosphere into the atmosphere and are formed through photochemical degradation of various precursor compounds. Aldehydes have atmospheric lifetimes of hours to days, in contrast to ketones, which persist for up to several weeks. While standard operating conditions for proton transfer time‑of‑flight mass spectrometer (PTR-ToF-MS) using H3O+ ions are unable to separate aldehydes and ketones, the use of NO+ reagent ions allows for the differential detection of isomeric carbonyl compounds with a high time resolution. Here we study the temporal (24 h) and vertical (80–325 m) variability of individual carbonyl compounds in the Amazon rainforest atmosphere with respect to their rainforest-specific sources and sinks. We found strong sources of ketones within or just above the rainforest canopy (acetone, MEK, and C5-ketones). A common feature of the carbonyls was nocturnal deposition observed by loss rates, most likely since oxidized volatile organic compounds are rapidly metabolized and utilized by the biosphere. With NO+ chemical ionization, we show that the dominant carbonyl species include acetone and propanal, which are present at a ratio of 1:10 in the wet–to–dry transition and 1:20 in the dry season.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

24 Oct 2024
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024,https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day...
Share