Preprints
https://doi.org/10.5194/egusphere-2023-3014
https://doi.org/10.5194/egusphere-2023-3014
22 Jan 2024
 | 22 Jan 2024

Benchmarking of SWE products based on outcomes of the SnowPEx+ Intercomparison Project

Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner

Abstract. We assess and rank 23 gridded snow water equivalent (SWE) products by implementing a novel evaluation strategy using a new suite of reference data from two cross-validated sources and a series of product inter-comparisons. The new reference data combines in situ measurements from both snow courses and airborne gamma measurements. Compared to previous evaluations of gridded products, we have substantially increased the spatial coverage and sample size across North America, and we are able to evaluate product performance across both mountain and non-mountain regions. The evaluation strategy we use ranks overall relative product performance while still accounting for individual differences in ability to represent SWE climatology, variability, and trends. Assessing these gridded products fills an important gap in the literature since individual gridded products are frequently chosen without prior justification as the basis for evaluating land surface and climate model outputs, along with other climate applications. The top performing products across the range of tests performed are ERA5-Land followed by the Crocus snow model. Our evaluation indicates that accurate representation of hemispheric SWE varies tremendously across the range of products. While most products are able to represent SWE reasonably well across Northern Hemisphere non-mountainous regions, the ability to accurately represent SWE in mountain regions and to accurately represent historical trends are much more variable. Finally, we demonstrate that for the ensemble of products evaluated here, attempts to assimilate surface snow observations and/or satellite measurements lead to a deleterious influence on regional snow mass trends, which is an important consideration for how such gridded products are produced and applied in the future.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

17 Jan 2025
Benchmarking of snow water equivalent (SWE) products based on outcomes of the SnowPEx+ Intercomparison Project
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
The Cryosphere, 19, 201–218, https://doi.org/10.5194/tc-19-201-2025,https://doi.org/10.5194/tc-19-201-2025, 2025
Short summary
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-3014', Anonymous Referee #1, 17 Mar 2024
    • AC3: 'Reply on RC1', Lawrence Mudryk, 20 Jun 2024
  • RC2: 'Comment on egusphere-2023-3014', Anonymous Referee #2, 14 Apr 2024
    • AC1: 'Reply on RC2', Lawrence Mudryk, 20 Jun 2024
    • AC2: 'Reply on RC2', Lawrence Mudryk, 20 Jun 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-3014', Anonymous Referee #1, 17 Mar 2024
    • AC3: 'Reply on RC1', Lawrence Mudryk, 20 Jun 2024
  • RC2: 'Comment on egusphere-2023-3014', Anonymous Referee #2, 14 Apr 2024
    • AC1: 'Reply on RC2', Lawrence Mudryk, 20 Jun 2024
    • AC2: 'Reply on RC2', Lawrence Mudryk, 20 Jun 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to revisions (further review by editor and referees) (05 Jul 2024) by Ruth Mottram
AR by Lawrence Mudryk on behalf of the Authors (26 Jul 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (09 Aug 2024) by Ruth Mottram
RR by Anonymous Referee #1 (05 Sep 2024)
RR by Anonymous Referee #2 (16 Sep 2024)
ED: Publish subject to technical corrections (01 Nov 2024) by Ruth Mottram
AR by Lawrence Mudryk on behalf of the Authors (13 Nov 2024)  Author's response   Manuscript 

Journal article(s) based on this preprint

17 Jan 2025
Benchmarking of snow water equivalent (SWE) products based on outcomes of the SnowPEx+ Intercomparison Project
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
The Cryosphere, 19, 201–218, https://doi.org/10.5194/tc-19-201-2025,https://doi.org/10.5194/tc-19-201-2025, 2025
Short summary
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner

Viewed

Total article views: 747 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
521 198 28 747 69 16 15
  • HTML: 521
  • PDF: 198
  • XML: 28
  • Total: 747
  • Supplement: 69
  • BibTeX: 16
  • EndNote: 15
Views and downloads (calculated since 22 Jan 2024)
Cumulative views and downloads (calculated since 22 Jan 2024)

Viewed (geographical distribution)

Total article views: 745 (including HTML, PDF, and XML) Thereof 745 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 17 Jan 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We evaluate and rank 23 products that estimate historical snow amounts. The evaluation uses new a set of ground measurements with improved spatial coverage enabling evaluation across both mountain and non-mountain regions. Performance measures vary tremendously across the products: while most perform reasonably in non-mountain regions, accurate representation of snow amounts in mountain regions and of historical trends is much more variable.