Preprints
https://doi.org/10.5194/egusphere-2023-988
https://doi.org/10.5194/egusphere-2023-988
24 May 2023
 | 24 May 2023

Wildfire smoke triggers cirrus formation: Lidar observations over the Eastern Mediterranean (Cyprus)

Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis

Abstract. The number of intense wildfires may increase in the upcoming years as a consequence of climate change. Changing aerosol conditions may lead to changes in regional and global cloud and precipitation pattern. One key aspect of research is presently whether or not wildfire smoke particles can initiate ice nucleation. We found strong evidence that aged smoke particles (dominated by organic aerosol particles) originating from wildfires in North America triggered significant ice nucleation at temperatures from −47 to −53 °C and caused the formation of extended cirrus layers. Our study is based on lidar observations over Limassol, Cyprus, from 27 October to 3 November 2020 when extended wildfire smoke fields crossed the Mediterranean Basin from Portugal to Cyprus. The observations suggest that the ice crystals were nucleated just below the tropopause in the presence of smoke particles serving as ice-nucleating particles (INPs). The main part of the 2–3 km thick smoke layer was, however, in the lower stratosphere just above the tropopause. With actual radiosonde observations of temperature and relative humidity and lidar-derived smoke particle surface area concentrations as starting values, gravity wave simulations show that lofting by 90–180 m is sufficient to initiate significant ice nucleation on the smoke particles, expressed in ice crystal number concentrations of 1–100 L−1.

Journal article(s) based on this preprint

14 Nov 2023
Wildfire smoke triggers cirrus formation: lidar observations over the eastern Mediterranean
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023,https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary

Rodanthi-Elisavet Mamouri et al.

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Albert Ansmann on behalf of the Authors (03 Sep 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (06 Sep 2023) by Martina Krämer
RR by Anonymous Referee #2 (11 Sep 2023)
ED: Publish as is (26 Sep 2023) by Martina Krämer
AR by Albert Ansmann on behalf of the Authors (29 Sep 2023)  Manuscript 

Journal article(s) based on this preprint

14 Nov 2023
Wildfire smoke triggers cirrus formation: lidar observations over the eastern Mediterranean
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023,https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary

Rodanthi-Elisavet Mamouri et al.

Rodanthi-Elisavet Mamouri et al.

Viewed

Total article views: 917 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
671 223 23 917 14 13
  • HTML: 671
  • PDF: 223
  • XML: 23
  • Total: 917
  • BibTeX: 14
  • EndNote: 13
Views and downloads (calculated since 24 May 2023)
Cumulative views and downloads (calculated since 24 May 2023)

Viewed (geographical distribution)

Total article views: 981 (including HTML, PDF, and XML) Thereof 981 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 14 Nov 2023
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
For the first time rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may become increasingly often in future with proceeding climate change. Based on lidar observations in Cyprus in autumn 2020 we provide detailed insight in the cirrus formation at the tropopause in the presence of aged wildfire smoke (here of 8–9-day old Californian wildfire smoke).