the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards spatio-temporal comparison of transient simulations and temperature reconstructions for the last deglaciation
Nils Weitzel
Heather Andres
Jean-Philippe Baudouin
Marie Kapsch
Uwe Mikolajewicz
Lukas Jonkers
Oliver Bothe
Elisa Ziegler
Thomas Kleinen
André Paul
Kira Rehfeld
Abstract. An increasing number of climate model simulations is becoming available for the transition from the Last Glacial Maximum to the Holocene. Assessing the simulations’ reliability requires benchmarking against environmental proxy records. To date, no established method exists to compare these two data sources in space and time over a period with changing background conditions. Here, we develop a new algorithm to rank simulations according to their deviation from reconstructed magnitudes and temporal patterns of orbital- as well as millennial-scale temperature variations. The use of proxy forward modeling avoids the need to reconstruct gridded or regional mean temperatures from sparse and uncertain proxy data.
First, we test the reliability and robustness of our algorithm in idealized experiments with prescribed deglacial temperature histories. We quantify the influence of limited temporal resolution, chronological uncertainties, and non-climatic processes by constructing noisy pseudo-proxies. While model-data comparison results become less reliable with increasing uncertainties, we find that the algorithm discriminates well between simulations under realistic non-climatic noise levels. To obtain reliable and robust rankings, we advise spatial averaging of the results for individual proxy records.
Second, we demonstrate our method by quantifying the deviations between an ensemble of transient deglacial simulations and a global compilation of sea surface temperature reconstructions. The ranking of the simulations differs substantially between the considered regions and timescales. We attribute this diversity in the rankings to more regionally confined temperature variations in reconstructions than in simulations, which could be the result of uncertainties in boundary conditions, shortcomings in models, or regionally varying characteristics of reconstructions such as recording seasons and depths. Future work towards disentangling these potential reasons can leverage the flexible design of our algorithm and its demonstrated ability to identify varying levels of model-data agreement.
- Preprint
(1372 KB) -
Supplement
(576 KB) - BibTeX
- EndNote
Nils Weitzel et al.
Status: open (until 19 Jul 2023)
Nils Weitzel et al.
Model code and software
Code in support of "Towards spatio-temporal comparison of transient simulations and temperature reconstructions for the last deglaciation" N. Weitzel, H. Andres, J.-P. Baudouin, M. Kapsch, U. Mikolajewicz, L. Jonkers, O. Bothe, E. Ziegler, T. Kleinen, A. Paul, and K. Rehfeld https://doi.org/10.5281/zenodo.7924110
Nils Weitzel et al.
Viewed
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
77 | 39 | 6 | 122 | 13 | 3 | 2 |
- HTML: 77
- PDF: 39
- XML: 6
- Total: 122
- Supplement: 13
- BibTeX: 3
- EndNote: 2
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1