Preprints
https://doi.org/10.5194/egusphere-2023-951
https://doi.org/10.5194/egusphere-2023-951
13 Jun 2023
 | 13 Jun 2023

Wind-Driven Emissions of Coarse Mode Particles in an Urban Environment

Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze

Abstract. Quantifying surface-atmosphere exchange rates of particles is important for understanding the role of suspended particulate matter on radiative transfer, clouds, precipitation, and climate change. Emissions of coarse mode particles with a diameter greater than 0.5 µm provide giant cloud condensation nuclei and ice nuclei. These emissions are critical for understanding the evolution of cloud microphysical properties yet remain poorly understood. Here we introduce a new method that uses lidar retrievals of the elastic backscatter and Doppler velocity to obtain surface number emissions of particles with a diameter greater than 0.53 µm. The technique is applied to study particle number fluxes over a two-month period during the TRACER campaign at an urban site near Houston, TX, USA. We found that all the observed fluxes were positive (upwards) indicating particle emission from the surface. The fluxes followed a diurnal pattern and peaked near noon local time. Flux intensity varied through the two months with multi-day periods of strong fluxes and multi-day periods of weak fluxes. Emission particle number fluxes peaked near ~100 cm-2 s-1. The daily averaged emission fluxes correlated with friction velocity and were anticorrelated to surface relative humidity. The emission flux can be parameterized as F = 3000u*4 where u* is the friction velocity in m s-1 and the emission flux F is in cm-2 s-1. The u* dependence is consistent with emission from wind-driven erosion. Estimated values for the mass flux are in the lower range of literature values from non-urban sites. These results demonstrate that urban environments may play an important role in supplying coarse mode particles to the boundary layer. We anticipate that quantification of these emissions will help constrain aerosol-cloud interaction models that use prognostic aerosol schemes.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

18 Jan 2024
Wind-driven emissions of coarse-mode particles in an urban environment
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024,https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-951', Anonymous Referee #1, 21 Jul 2023
  • RC2: 'Comment on egusphere-2023-951', Anonymous Referee #2, 30 Oct 2023
  • AC1: 'Comment on egusphere-2023-951', Markus Petters, 21 Nov 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-951', Anonymous Referee #1, 21 Jul 2023
  • RC2: 'Comment on egusphere-2023-951', Anonymous Referee #2, 30 Oct 2023
  • AC1: 'Comment on egusphere-2023-951', Markus Petters, 21 Nov 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Markus Petters on behalf of the Authors (22 Nov 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (27 Nov 2023) by Yves Balkanski
AR by Markus Petters on behalf of the Authors (27 Nov 2023)

Post-review adjustments

AA: Author's adjustment | EA: Editor approval
AA by Markus Petters on behalf of the Authors (15 Jan 2024)   Author's adjustment   Manuscript
EA: Adjustments approved (15 Jan 2024) by Yves Balkanski

Journal article(s) based on this preprint

18 Jan 2024
Wind-driven emissions of coarse-mode particles in an urban environment
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024,https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze

Viewed

Total article views: 461 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
302 136 23 461 42 16 15
  • HTML: 302
  • PDF: 136
  • XML: 23
  • Total: 461
  • Supplement: 42
  • BibTeX: 16
  • EndNote: 15
Views and downloads (calculated since 13 Jun 2023)
Cumulative views and downloads (calculated since 13 Jun 2023)

Viewed (geographical distribution)

Total article views: 449 (including HTML, PDF, and XML) Thereof 449 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This work introduces a new method that uses remote sensing techniques to obtain surface number emissions of particles with a diameter greater than 500 nm. The technique was applied to study particle emissions at an urban site near Houston, TX, USA. The emissions followed a diurnal pattern and peaked near noon local time. The daily averaged emissions correlated with wind speed. The source is likely due to wind-driven erosion of material situated on asphalted and other hard surfaces.