Preprints
https://doi.org/10.5194/egusphere-2023-862
https://doi.org/10.5194/egusphere-2023-862
22 May 2023
 | 22 May 2023

Examination of varying mixed-phase stratocumulus clouds in terms of their properties, ice processes and aerosol-cloud interactions between polar and midlatitude cases: An attempt to propose a microphysical factor to explain the variation

Seoung Soo Lee, Chang-Hoon Jung, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song

Abstract. This study examines the ratio of ice crystal number concentration (ICNC) to cloud droplet number concentration (CDNC), which is ICNC/CDNC, as a microphysical factor that induces differences in cloud development, its interactions with aerosols and impacts of ice processes on them among cases of mixed-phase clouds. This examination is performed using a large-eddy simulation (LES) framework and one of efforts toward a more general understanding of mechanisms controlling those development and impacts in mixed-phase clouds. For the examination, this study compares a case of polar mixed-phase clouds to that of midlatitude mixed-phase clouds with weak precipitation. It is found that ICNC/CDNC plays a critical role in making differences in cloud development with respect to the relative proportion of liquid and ice mass between the cases by affecting in-cloud latent-heat processes. Note that this proportion has an important implication for cloud radiative properties and thus climate. It is also found that ICNC/CDNC plays a critical role in making differences in clouds and their interactions with aerosols and impacts of ice processes on them between the cases by affecting in-cloud latent-heat processes. Findings of this study suggest that ICNC/CDNC can be a simplified general factor that contributes to a more general understanding of mixed-phase clouds and roles of ice processes and aerosols in them and thus, to the development of more general parameterizations of those clouds and roles.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

20 Jan 2025
Role of a key microphysical factor in mixed-phase stratocumulus clouds and their interactions with aerosols
Seoung Soo Lee, Chang Hoon Jung, Jinho Choi, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song
Atmos. Chem. Phys., 25, 705–726, https://doi.org/10.5194/acp-25-705-2025,https://doi.org/10.5194/acp-25-705-2025, 2025
Short summary
Seoung Soo Lee, Chang-Hoon Jung, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-862', Anonymous Referee #1, 10 Jul 2023
    • AC1: 'Reply on RC1', Seoung Soo Lee, 08 Oct 2023
  • RC2: 'Comment on egusphere-2023-862', Anonymous Referee #2, 06 Sep 2023
    • AC2: 'Reply on RC2', Seoung Soo Lee, 08 Oct 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-862', Anonymous Referee #1, 10 Jul 2023
    • AC1: 'Reply on RC1', Seoung Soo Lee, 08 Oct 2023
  • RC2: 'Comment on egusphere-2023-862', Anonymous Referee #2, 06 Sep 2023
    • AC2: 'Reply on RC2', Seoung Soo Lee, 08 Oct 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Seoung Soo Lee on behalf of the Authors (08 Oct 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (27 Oct 2023) by Odran Sourdeval
RR by Anonymous Referee #3 (21 Dec 2023)
RR by Anonymous Referee #2 (14 Feb 2024)
ED: Reconsider after major revisions (15 Feb 2024) by Odran Sourdeval
AR by Seoung Soo Lee on behalf of the Authors (23 May 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (05 Jun 2024) by Odran Sourdeval
RR by Anonymous Referee #3 (24 Jun 2024)
RR by Anonymous Referee #2 (05 Aug 2024)
ED: Reconsider after major revisions (21 Aug 2024) by Odran Sourdeval
AR by Seoung Soo Lee on behalf of the Authors (20 Sep 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (11 Oct 2024) by Odran Sourdeval
AR by Seoung Soo Lee on behalf of the Authors (27 Oct 2024)  Manuscript 

Journal article(s) based on this preprint

20 Jan 2025
Role of a key microphysical factor in mixed-phase stratocumulus clouds and their interactions with aerosols
Seoung Soo Lee, Chang Hoon Jung, Jinho Choi, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song
Atmos. Chem. Phys., 25, 705–726, https://doi.org/10.5194/acp-25-705-2025,https://doi.org/10.5194/acp-25-705-2025, 2025
Short summary
Seoung Soo Lee, Chang-Hoon Jung, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song
Seoung Soo Lee, Chang-Hoon Jung, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song

Viewed

Total article views: 684 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
472 158 54 684 56 43
  • HTML: 472
  • PDF: 158
  • XML: 54
  • Total: 684
  • BibTeX: 56
  • EndNote: 43
Views and downloads (calculated since 22 May 2023)
Cumulative views and downloads (calculated since 22 May 2023)

Viewed (geographical distribution)

Total article views: 664 (including HTML, PDF, and XML) Thereof 664 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Jan 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This study is motivated by the fact that there are no general factors that represent the overall properties of mixed-phase clouds. The absence of these factors contributes to the high uncertainty in the prediction of climate change. Hence, this study finds a general factor that explains differences in the properties of different mixed-phase clouds, using a modeling tool. This factor is useful to develop a general way of using climate models to better predict climate change.