Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-731
https://doi.org/10.5194/egusphere-2023-731
08 May 2023
 | 08 May 2023

The Atmospheric Oxidizing Capacity in China: Part 1. Roles of different photochemical processes

Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang

Abstract. The atmospheric oxidation capacity (AOC) characterizes the ability of the atmosphere to scavenge air pollutants. However, it is not well understood in China, where anthropogenic emissions have changed dramatically in the past decade. A detailed analysis of different parameters that determine the AOC in China is presented on the basis of numerical simulations performed with the regional chemical-meteorological model WRF-Chem. The model results, with the aerosol effects of extinction and heterogeneous processes taken into account, show that the presence of aerosols leads to a decrease in surface ozone of approximately 8–10 ppbv in NOx-limited rural areas and an increase of 5–10 ppbv in VOC-limited urban areas. The ozone reduction in NOx-sensitive regions is due to the combined effect of nitrogen dioxide and peroxy radical uptake on particles and of the light extinction by aerosols, which affects the photodissociation rates. The ozone increase in VOC-sensitive areas is attributed to the uptake of NO2 by aerosols, which is offset by the reduced ozone formation associated with HO2 uptake and with the aerosol extinction. Our study concludes that more than 90 % of the daytime AOC is due to the reaction of the hydroxyl radical with VOCs and carbon monoxide. In urban areas, during summertime, the main contributions to daytime AOC are the reactions of OH with alkene (30–50 %), oxidized volatile organic compounds (OVOCs) (33–45 %), and carbon monoxide (20–45 %). In rural areas, the largest contribution results from the reaction of OH with alkenes (60 %). Nocturnal AOC is dominantly attributed to the nitrate radical (50–70 %). Our results shed light on the contribution of aerosol-related NOx loss and the high reactivity of alkenes for photochemical pollution. With the reduction of aerosols and anthropogenic ozone precursors, the chemistry of nitrogen and temperature-sensitive VOCs will become increasingly important. More attention needs to be paid to the role of photodegradable OVOCs and nocturnal oxidants in the formation of secondary pollutants.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

14 Nov 2023
The atmospheric oxidizing capacity in China – Part 1: Roles of different photochemical processes
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 23, 14127–14158, https://doi.org/10.5194/acp-23-14127-2023,https://doi.org/10.5194/acp-23-14127-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
In this study, we used a regional chemical transport model to characterize the different...
Share