Preprints
https://doi.org/10.5194/egusphere-2023-528
https://doi.org/10.5194/egusphere-2023-528
05 Jul 2023
 | 05 Jul 2023

Ozone source attribution in polluted European areas during summer as simulated with MECO(n)

Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis

Abstract. Emissions of land transport and anthropogenic non-traffic emissions (e.g. industry, households and power generation) are significant sources of nitrogen oxides, carbon monoxide, and volatile organic compounds. These emissions are important precursors of tropospheric ozone and affect air quality. The contribution of emission sectors to ozone cannot be mea- sured directly, but calculated with sophisticated models of atmospheric chemistry only. For this study we apply a the MECO(n) model system (MESSy-fied ECHAM and COSMO models nested n times) equipped with a source attribution method to investigate the contribution of anthropogenic (land transport and non-traffic) and biogenic emissions to ozone in Europe. This model system couples a global chemistry-climate mode with a regional chemistry-climate model. Our source attribution (tag- ging) method fully decomposes the budgets of ozone and ozone precursors into contributions from various emission sources and regions. To estimate also the contributions of regional versus long-range transported contributions we distinguish four different source regions: Europe, North America, East Asia and Rest of the World. We performed one simulation covering 2 years with two regional refinements, one covering Europe (50 km resolution), and one covering Central Europe (12 km resolution). The model results are evaluated with data from European air quality stations and in situ data from the flight campaign Effect of Megacities on the Transport and Transformation of Pollutants on the Regional to Global Scales (EMeRGe) Europe in Summer 2017. Two study areas with large anthropogenic emissions, Benelux and Po Valley, are compared in detail. The absolute contributions of European land transport emissions to ground-level ozone for JJA 2017 in the Po Valley are larger than in the Benelux region (7 nmol mol−1 and ≈ 3 nmol mol−1), the same applies for the relative contributions with 12 % in the Po Valley and 7 % in the Benelux regions. Similar results are found for the contribution of European anthropogenic non-traffic emissions. Here, absolute contributions are larger in the Po Valley with 11 nmol mol−1 (19 %) than 5 nmol mol−1 (15 %) in the Benelux regions. The relative contributions to ozone from long-range transported land transport emissions in both regions in the range of 5–6 %, and the relative contributions from long-range transported non-traffic emissions are 9 % in the Po Valley and 13 % in the Benelux region. Contributions to ozone from long-range transported emissions are clearly more homogeneously distributed throughout Europe, whereas the distribution of contributions to ozone from European emissions is notably in-homogeneous. During periods of high ozone, contributions of European land transport and anthropogenic non-traffic emissions increase in particular over the Po Valley and in the Benelux. Especially in the Po Valley the increase is very strong and extreme ozone values could be mitigated in the Po Valley by reducing anthropogenic emissions.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-528', Anonymous Referee #1, 25 Jul 2023
    • CC1: 'Short reply on RC1', Mariano Mertens, 08 Aug 2023
    • AC2: 'Reply on RC1', Mariano Mertens, 15 Apr 2024
    • AC3: 'Reply on RC1', Mariano Mertens, 15 Apr 2024
  • RC2: 'Comment on egusphere-2023-528', Anonymous Referee #2, 07 Nov 2023
    • AC1: 'Reply on RC2', Mariano Mertens, 15 Apr 2024
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis

Viewed

Total article views: 546 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
347 155 44 546 39 20 21
  • HTML: 347
  • PDF: 155
  • XML: 44
  • Total: 546
  • Supplement: 39
  • BibTeX: 20
  • EndNote: 21
Views and downloads (calculated since 05 Jul 2023)
Cumulative views and downloads (calculated since 05 Jul 2023)

Viewed (geographical distribution)

Total article views: 535 (including HTML, PDF, and XML) Thereof 535 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 26 May 2024
Download
Short summary
Anthropogenic emissions are a major source of precursors for tropospheric ozone formation. As ozone formation is highly non-linear, we apply a global-regional chemistry-climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. We focus on two major polluted areas in Europe, the Po Valley and the Benelux region. Our analysis shows that in particular anthropogenic emissions from Europe contribute largely to ground-level ozone.