Preprints
https://doi.org/10.5194/egusphere-2023-402
https://doi.org/10.5194/egusphere-2023-402
28 Mar 2023
 | 28 Mar 2023

Low Cobalt Inventories in the Amundsen and Ross Seas Driven by High Demand for Labile Cobalt Uptake Among Native Phytoplankton Communities

Rebecca J. Chmiel, Riss M. Kellogg, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito

Abstract. Cobalt (Co) is a scarce but essential micronutrient for marine plankton in the Southern Ocean and coastal Antarctic seas where dissolved cobalt (dCo) concentrations can be extremely low. This study presents total dCo and labile dCo distributions measured via shipboard voltammetry in the Amundsen Sea, Ross Sea and Terra Nova Bay during the CICLOPS (Cobalamin and Iron Co-Limitation of Phytoplankton Species) expedition. A significantly smaller dCo inventory was observed during the 2017/2018 CICLOPS expedition compared to two 2005/2006 expeditions to the Ross Sea conducted over a decade earlier. The dCo inventory loss (~10–20 pM) was present in both the surface and deep ocean and was attributed to the loss of labile dCo, resulting in the near-complete complexation of dCo by strong ligands in the photic zone. A changing dCo inventory in Antarctic coastal seas could be driven by the alleviation of iron (Fe) limitation in coastal areas where the flux of Fe-rich sediments from melting ice shelves and deep sediment resuspension may have shifted the region towards vitamin B12 and/or zinc (Zn) limitation, both of which are likely to increase the demand for Co among marine plankton. High demand for Zn by phytoplankton can result in increased Co and cadmium (Cd) uptake because these metals often share the same metal uptake transporters. This study compared the magnitudes and ratios of Zn, Cd and Co uptake (ρ) across upper ocean profiles and observed order of magnitude uptake trends (ρZn > ρCd > ρCo) that paralleled the trace metal concentrations in seawater. High rates of Co and Zn uptake were observed throughout the region, and the speciation of available Co and Zn appeared to influence trends in dissolved metal : phosphate stoichiometry and uptake rates over depth. Multi-year loss of the dCo inventory throughout the water column may be explained by an increase in Co uptake into particulate organic matter (POM) and subsequent increased flux of Co into sediments via sinking and burial. This perturbation of the Southern Ocean Co biogeochemical cycle could signal changes in the nutrient limitation regimes, phytoplankton bloom composition, and carbon sequestration sink of the Southern Ocean.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

04 Oct 2023
Low cobalt inventories in the Amundsen and Ross seas driven by high demand for labile cobalt uptake among native phytoplankton communities
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023,https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Rebecca J. Chmiel, Riss M. Kellogg, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-402', Randelle Bundy, 01 May 2023
    • AC1: 'Reply on RC1', Mak Saito, 28 Jun 2023
  • RC2: 'Comment on egusphere-2023-402', Neil Wyatt, 19 May 2023
    • AC2: 'Reply on RC2', Mak Saito, 28 Jun 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-402', Randelle Bundy, 01 May 2023
    • AC1: 'Reply on RC1', Mak Saito, 28 Jun 2023
  • RC2: 'Comment on egusphere-2023-402', Neil Wyatt, 19 May 2023
    • AC2: 'Reply on RC2', Mak Saito, 28 Jun 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (15 Jul 2023) by Koji Suzuki
AR by Mak Saito on behalf of the Authors (15 Jul 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (18 Jul 2023) by Koji Suzuki
RR by Randelle Bundy (01 Aug 2023)
ED: Publish as is (09 Aug 2023) by Koji Suzuki
AR by Mak Saito on behalf of the Authors (19 Aug 2023)

Journal article(s) based on this preprint

04 Oct 2023
Low cobalt inventories in the Amundsen and Ross seas driven by high demand for labile cobalt uptake among native phytoplankton communities
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023,https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Rebecca J. Chmiel, Riss M. Kellogg, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Rebecca J. Chmiel, Riss M. Kellogg, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito

Viewed

Total article views: 408 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
266 126 16 408 9 8
  • HTML: 266
  • PDF: 126
  • XML: 16
  • Total: 408
  • BibTeX: 9
  • EndNote: 8
Views and downloads (calculated since 28 Mar 2023)
Cumulative views and downloads (calculated since 28 Mar 2023)

Viewed (geographical distribution)

Total article views: 381 (including HTML, PDF, and XML) Thereof 381 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Dec 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Cobalt is an important micronutrient for plankton yet is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.