Preprints
https://doi.org/10.5194/egusphere-2023-2950
https://doi.org/10.5194/egusphere-2023-2950
18 Dec 2023
 | 18 Dec 2023
Status: this preprint is open for discussion.

Development of multiple taliks near settlements on Svalbard – a new source of drinking water for the High Arctic?

Anatoly O. Sinitsyn, Sara Bazin, Rasmus Benestad, Bernd Etzelmüller, Ketil Isaksen, Hanne Kvitsand, Julia Lutz, Andrea L. Popp, Lena Rubensdotter, and Sebastian Westermann

Abstract. This article presents a comprehensive documentation and analysis of long-term observations of year-round groundwater occurrences in rivers and various types of taliks under continuous permafrost conditions on Svalbard. Previously thought to be nonexistent, the existence of these taliks has been confirmed through rigorous field observations, geotechnical investigations, and extensive data collection. This discovery holds pivotal implications for our current understanding of permafrost conditions in central Svalbard. The research reveals the presence of several year-round taliks in close proximity to the settlements in Longyearbyen, Pyramiden, and Ny-Ålesund. Importantly, these findings open up opportunities for using these taliks as groundwater reservoirs for extraction of drinking water, either in natural state or with appropriate engineering modifications. Furthermore, climate change may the possibilities in future by expanding the size of these talik reservoirs due to rising air temperatures and increased inflow of fresh water over prolonged summer . The results underscore the importance of including river taliks in continuous permafrost areas in water management strategies for Svalbard and similar Arctic regions. This research not only challenges prior assumptions but also offers valuable insights for sustainable water resource utilization in a changing climate context.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Anatoly O. Sinitsyn, Sara Bazin, Rasmus Benestad, Bernd Etzelmüller, Ketil Isaksen, Hanne Kvitsand, Julia Lutz, Andrea L. Popp, Lena Rubensdotter, and Sebastian Westermann

Status: open (extended)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2950', Anonymous Referee #1, 29 Apr 2024 reply
Anatoly O. Sinitsyn, Sara Bazin, Rasmus Benestad, Bernd Etzelmüller, Ketil Isaksen, Hanne Kvitsand, Julia Lutz, Andrea L. Popp, Lena Rubensdotter, and Sebastian Westermann
Anatoly O. Sinitsyn, Sara Bazin, Rasmus Benestad, Bernd Etzelmüller, Ketil Isaksen, Hanne Kvitsand, Julia Lutz, Andrea L. Popp, Lena Rubensdotter, and Sebastian Westermann

Viewed

Total article views: 635 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
497 113 25 635 48 21 25
  • HTML: 497
  • PDF: 113
  • XML: 25
  • Total: 635
  • Supplement: 48
  • BibTeX: 21
  • EndNote: 25
Views and downloads (calculated since 18 Dec 2023)
Cumulative views and downloads (calculated since 18 Dec 2023)

Viewed (geographical distribution)

Total article views: 611 (including HTML, PDF, and XML) Thereof 611 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 16 Jun 2024
Download
Short summary
This study looked at under the ground on Svalbard, an archipelago close to the North Pole. We found something very surprising – there is water under the all year around frozen soil. This was not known before. This water could be used for drinking if we manage it carefully. This is important because getting clean drinking water is very difficult in Svalbard, and other Arctic places. Also, because the climate is getting warmer, there might be even more water underground in the future.