Preprints
https://doi.org/10.5194/egusphere-2023-2781
https://doi.org/10.5194/egusphere-2023-2781
15 Dec 2023
 | 15 Dec 2023

Exploring the potential of forest snow modelling at the tree and snowpack layer scale

Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse

Abstract. Boreal and subalpine forests host seasonal snow for multiple months per year, however snow regimes in these environments are rapidly changing due to rising temperatures and forest disturbances. Accurate prediction of forest snow dynamics, relevant for ecohydrology, biogeochemistry, cryosphere, and climate sciences, requires process-based models. While snow schemes that track the microstructure of individual snow layers have been proposed for avalanche research, tree-scale process resolving canopy representations so far only exist in a few snow-hydrological models. A framework that enables layer and microstructure resolving forest snow simulations at the meter scale is lacking to date. To fill this research gap, this study introduces the forest snow modelling framework FSMCRO, which combines two detailed, state-of-the art model components: the canopy representation from the Flexible Snow Model (FSM2), and the snowpack representation of the Crocus ensemble model system (ESCROC). We apply FSMCRO to discontinuous forests at boreal and subalpine sites to showcase how tree-scale forest snow processes affect layer-scale snowpack properties. Simulations at contrasting locations reveal marked differences in stratigraphy throughout the winter. These arise due to different prevailing processes at under-canopy versus gap locations, and due to variability in snow metamorphism dictated by a spatially variable snowpack energy balance. Ensemble simulations allow us to assess the robustness and uncertainties of simulated stratigraphy. Spatially explicit simulations unravel the dependencies of snowpack properties on canopy structure at a previously unfeasible level of detail. Our findings thus demonstrate how hyper-resolution forest snow simulations can complement observational approaches to improve our understanding of forest snow dynamics, highlighting the potential of such models as research tool in interdisciplinary studies.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

08 Oct 2024
Exploring the potential of forest snow modeling at the tree and snowpack layer scale
Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse
The Cryosphere, 18, 4607–4632, https://doi.org/10.5194/tc-18-4607-2024,https://doi.org/10.5194/tc-18-4607-2024, 2024
Short summary
Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2781', Anonymous Referee #1, 03 Apr 2024
    • AC1: 'Reply on RC1', Giulia Mazzotti, 02 Jul 2024
  • RC2: 'Comment on egusphere-2023-2781', Anonymous Referee #2, 06 May 2024
    • AC2: 'Reply on RC2', Giulia Mazzotti, 02 Jul 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2781', Anonymous Referee #1, 03 Apr 2024
    • AC1: 'Reply on RC1', Giulia Mazzotti, 02 Jul 2024
  • RC2: 'Comment on egusphere-2023-2781', Anonymous Referee #2, 06 May 2024
    • AC2: 'Reply on RC2', Giulia Mazzotti, 02 Jul 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (29 Jul 2024) by Alexandre Langlois
AR by Giulia Mazzotti on behalf of the Authors (07 Aug 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (08 Aug 2024) by Alexandre Langlois
AR by Giulia Mazzotti on behalf of the Authors (13 Aug 2024)  Author's response   Manuscript 

Journal article(s) based on this preprint

08 Oct 2024
Exploring the potential of forest snow modeling at the tree and snowpack layer scale
Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse
The Cryosphere, 18, 4607–4632, https://doi.org/10.5194/tc-18-4607-2024,https://doi.org/10.5194/tc-18-4607-2024, 2024
Short summary
Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse
Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse

Viewed

Total article views: 737 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
498 197 42 737 65 29 27
  • HTML: 498
  • PDF: 197
  • XML: 42
  • Total: 737
  • Supplement: 65
  • BibTeX: 29
  • EndNote: 27
Views and downloads (calculated since 15 Dec 2023)
Cumulative views and downloads (calculated since 15 Dec 2023)

Viewed (geographical distribution)

Total article views: 724 (including HTML, PDF, and XML) Thereof 724 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 08 Oct 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
As many boreal and alpine forests have seasonal snow, models are needed to predict forest snow under future environmental conditions. We have created a new forest snow model by combining existing, very detailed model components for the canopy and the snowpack. We applied it to forests in Switzerland and Finland and showed how complex forest cover leads to a snowpack layering that is very variable in space and time, because different processes prevail at different locations in the forest.