Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-2661
https://doi.org/10.5194/egusphere-2023-2661
06 Dec 2023
 | 06 Dec 2023

AMOC Stability Amid Tipping Ice Sheets: The Crucial Role of Rate and Noise

Sacha Sinet, Peter Ashwin, Anna S. von der Heydt, and Henk A. Dijkstra

Abstract. The Atlantic Meridional Overturning Circulation (AMOC) has recently been categorised as core tipping element, for it is believed to be prone to critical transition under climate change, implying drastic consequences on a planetary scale. Moreover, the AMOC is strongly coupled to polar ice sheets via meltwater fluxes. On one hand, most studies agree on the fact that a collapse of the Greenland ice sheet would result in a weakening of AMOC. On the other hand, the consequences of a collapse of the West Antarctica ice sheet are less well understood. However, some studies suggest that meltwater originating from the Southern Hemisphere is able to stabilize the AMOC. Using a conceptual model of the AMOC and a minimal parameterization of ice sheet collapse, we investigate the origin and relevance of this stabilization effect in both the deterministic and stochastic cases. While a substantial stabilization is found in both cases, we find that important rate and noise-induced effects result in bifurcation-induced tipping approaches to be inaccurate for predicting the AMOC stability.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

12 Jul 2024
AMOC stability amid tipping ice sheets: the crucial role of rate and noise
Sacha Sinet, Peter Ashwin, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 859–873, https://doi.org/10.5194/esd-15-859-2024,https://doi.org/10.5194/esd-15-859-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Some components of the Earth system may irreversibly collapse under global warming. Among them,...
Share