Preprints
https://doi.org/10.5194/egusphere-2023-2645
https://doi.org/10.5194/egusphere-2023-2645
22 Nov 2023
 | 22 Nov 2023
Status: this preprint has been withdrawn by the authors.

Evidence of an Ozone Mini-Hole Structure in the Early Hunga Tonga Plume Above the Indian Ocean

Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann

Abstract. On 15 January 2022, the Hunga Tonga-Hunga Ha’apai (HTHH) volcano (20.5° S, 175.4° E) erupted, releasing significant amounts of aerosols, sulfur dioxide (SO2), and water vapor (H2O) into the stratosphere. Due to the general stratospheric circulation of the southern hemisphere, this volcanic plume traveled westward and impacted the Indian Ocean and Reunion (21.1° S, 55.5° E) a few days after the eruption. This study aims to show how the currently available ozone observations highlight the stratospheric dynamics during the first week following the eruption. The Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) aerosol extinction profiles were used to investigate the vertical and latitudinal extension of the volcanic plume over the Indian Ocean. The volcanic aerosol plume was also observed with an aerosol lidar and a sunphotometer located at Reunion. The impact of this plume on stratospheric ozone was then investigated using MLS (Microwave Limb Spectrometer), OMI (Ozone Monitoring Instrument), MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, version 2) and M2-SCREAM (MERRA-2 Stratospheric Composition Reanalysis of Aura MLS) ozone profiles and total ozone. The results show that the volcanic plume traveled over Reunion at altitudes ranging from 26.8 to 29.7 km and spanned more than 20 degrees of latitude over the Indian Ocean. Ozone analyses reveal an ozone mini-hole structure, with the Total Column Ozone (TCO) anomaly of -15 DU from MERRA-2 covering an area of 12.06×105 km2 on 17 January and 4.94 × 105 km2 on 22 January. The ozone profiles from MLS show that a maximum stratospheric column ozone anomaly of -14.66 DU (-6.38 %) was found within the aerosol plume on 20 January.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download

This preprint has been withdrawn.

Short summary
The eruption of the Hunga Tonga volcano in January 2022 released substantial amounts of...
Share