Preprints
https://doi.org/10.5194/egusphere-2023-2589
https://doi.org/10.5194/egusphere-2023-2589
11 Dec 2023
 | 11 Dec 2023

Tipping points in ocean and atmosphere circulations

Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal

Abstract. In this review, we assess scientific evidence for tipping points in ocean and atmosphere circulations. The warming of oceans, modified wind patterns and increasing freshwater influx from melting ice hold the potential to disrupt established circulation patterns. The literature provides evidence for oceanic tipping points in the Atlantic Meridional Overturning Circulation (AMOC), the North Atlantic Subpolar Gyre (SPG), and the Antarctic Overturning Circulation, which may collapse under warmer and ‘fresher’ (i.e. less salty) conditions. A slowdown or collapse of these oceanic circulations would have far-reaching consequences for the rest of the climate system and could lead to strong impacts on human societies and the biosphere.

Among the atmospheric circulation systems considered, we classify the West African monsoon as a tipping system. Its abrupt changes in the past have led to vastly different vegetation states of the Sahara (e.g. “green Sahara” states). Evidence about tipping of the monsoon systems over South America and Asia is limited however, there are multiple potential sources of destabilisation, including large-scale deforestation, air pollution, and shifts in other circulation patterns (in particular the AMOC). Although theoretically possible, there is currently little indication for tipping points in tropical clouds or mid-latitude atmospheric circulations. Similarly, tipping towards a more extreme or persistent state of the El Niño-Southern Oscillation (ENSO) is currently not fully supported by models and observations.

While the tipping thresholds for many of these systems are uncertain, tipping could have severe socio-environmental consequences. Stabilising Earth’s climate (along with minimising other environmental pressures, like aerosol pollution and ecosystem degradation) is critical for reducing the likelihood of reaching tipping points in the ocean-atmosphere system.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2589', Anonymous Referee #1, 29 Dec 2023
    • AC1: 'Reply on RC1', Sina Loriani, 15 Oct 2024
  • CC1: 'Comment on AMOC statements in egusphere-2023-2589', Stefan Rahmstorf, 29 Mar 2024
    • CC2: 'Postscript on CC1', Stefan Rahmstorf, 30 Mar 2024
      • AC3: 'Reply on CC2', Sina Loriani, 15 Oct 2024
  • RC2: 'Comment on egusphere-2023-2589', Anonymous Referee #2, 10 Apr 2024
    • AC2: 'Reply on RC2', Sina Loriani, 15 Oct 2024
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal

Viewed

Total article views: 1,952 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,025 819 108 1,952 75 36 35
  • HTML: 1,025
  • PDF: 819
  • XML: 108
  • Total: 1,952
  • Supplement: 75
  • BibTeX: 36
  • EndNote: 35
Views and downloads (calculated since 11 Dec 2023)
Cumulative views and downloads (calculated since 11 Dec 2023)

Viewed (geographical distribution)

Total article views: 1,950 (including HTML, PDF, and XML) Thereof 1,950 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 17 Jan 2025
Download
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.