Preprints
https://doi.org/10.5194/egusphere-2023-2543
https://doi.org/10.5194/egusphere-2023-2543
20 Nov 2023
 | 20 Nov 2023

Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne Lidar data

Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small

Abstract. Automated snow station networks provide critical hydrologic data. Whether point observations represent snowpack at larger areas is an enduring question. Leveraging the recent proliferation of airborne Lidar snow depth data, we revisit the question of snow station representativeness at multiple scales surrounding 111 stations in Colorado and California (U.S.A.) from 2021–2023 (n= 476 total samples). In about 50 % of cases, station depths were at least 10 cm higher than areal-mean snow depth (from Lidar) at 0.5 to 4 km scales. The nearest 50 m Lidar pixels had lower bias and were more often representative than coincident stations. The closest 3 m Lidar pixel often agreed (within 10 cm) with station snow depth, suggesting differences between station snow depth and the nearest 50 m Lidar pixel result from highly localized conditions, not the measurement method. Representativeness decreased as scale increased up to 6 km, mainly explained by the elevation of a site relative to the larger area. The bias direction at individual snow stations is temporally consistent, suggesting the relationship between station depth and that of the surrounding area may be predictable. Improving understanding of snow station representativeness could allow for more accurate validation of modelled and remotely sensed data.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

08 Aug 2024
Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024,https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Automated stations measure snow properties at a single point, but are frequently used to...
Share