14 Nov 2023
 | 14 Nov 2023
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Parametric Sensitivity and Constraint of Contrail Cirrus Radiative Forcing in the Atmospheric Component of CNRM-CM6-1

Maxime Perini, Laurent Terray, Daniel Cariolle, Saloua Peatier, and Marie-Pierre Moine

Abstract. The impact of aviation on climate change due to CO2 emissions no longer needs to be demonstrated. However, the impact of non-CO2 effects such as those from contrails is still subject to large uncertainties. An often neglected source of uncertainty comes from climate model sensitivity to numerical parameters representing subgrid-scale processes. Here we investigate the sensitivity of contrail radiative forcing due parametric uncertainty based on the atmospheric component of the CNRM-CM6-1 coupled model. A perturbed parameter ensemble is generated from the sampling of twenty-two adjustable parameters involved in convection, cloud microphysics and radiative transfer processes. A surrogate model based on multi-linear regression is used to explore the full range of contrail radiative forcing due to parametric uncertainty. Based on an optimization algorithm and a climatological skill score, we find a constrained range of contrail radiative forcing from equally skillful model versions with different sets of parameters. We find a contrail radiative forcing best-estimate of 56 mW.m-2 with a 5–95 % confidence interval of 38–70 mW.m-2. Finally, a sensitivity analysis shows that model parameters controlling contrail's lifetime play a major role in the estimation of contrail radiative forcing.

Maxime Perini et al.

Status: open (until 26 Dec 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on egusphere-2023-2478', Sidiki Sanogo, 21 Nov 2023 reply

Maxime Perini et al.


Total article views: 23 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
14 4 5 23 3 2 2
  • HTML: 14
  • PDF: 4
  • XML: 5
  • Total: 23
  • Supplement: 3
  • BibTeX: 2
  • EndNote: 2
Views and downloads (calculated since 14 Nov 2023)
Cumulative views and downloads (calculated since 14 Nov 2023)

Viewed (geographical distribution)

Total article views: 22 (including HTML, PDF, and XML) Thereof 22 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 29 Nov 2023
Short summary
Uncertainty about aviation radiative forcing is essentially due to uncertainties about non-CO2 forcing, especially for condensation trails (contrails). This study uses a new parameterization for ice-supersaturation and additional contrail coverage in the CNRM-CM6-1 atmospheric component to estimate contrail radiative forcing for the year 2000. The range of contrail radiative forcing due to parametric uncertainty is analyzed. Our contrail radiative forcing best estimate is 56 (38−70) mW.m-2.