Preprints
https://doi.org/10.5194/egusphere-2023-2441
https://doi.org/10.5194/egusphere-2023-2441
06 Nov 2023
 | 06 Nov 2023

Soot aerosol from commercial aviation engines are poor ice nucleating particles at cirrus cloud temperatures

Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji

Abstract. Ice nucleating particles catalyse ice formation in clouds, affecting climate through radiative forcing from aerosol-cloud interactions. Aviation directly emits particles into the upper troposphere where ice formation conditions are favourable. Previous studies have used proxies of aviation soot to estimate their ice nucleation activity, however the investigations with commercial aircraft soot from modern in-use aircraft engine have not been quantified. In this work, we sample aviation soot particles at ground level from different commercial aircraft engines to test their ice nucleation ability at temperatures ≤ 228 K, as a function of engine thrust and soot particle size. Additionally soot particles were catalytically stripped to reveal the impact of mixing state on their ice nucleation ability. Particle physical and chemical properties were further characterised and related to the ice nucleation properties. The results show that aviation soot nucleates ice at or above relative humidity conditions required for homogeneous freezing of solution droplets (RHhom).We attribute this to a mesopore paucity inhibiting pore condensation and the sulfur content which suppresses freezing. Only large soot aggregates (400 nm) emitted under 30–100 % thrust conditions for a subset of engines (2/10) nucleate ice via pore condensation and freezing. For those specific engines, the presence of hydrophilic chemical groups facilitates the nucleation. Aviation soot emitted at thrust ≥100 % (sea level thrust) nucleates ice at or above RHhom. Overall our results suggest that aviation soot will not contribute to natural cirrus formation and can be used in models to update impacts of soot-cirrus clouds.

Journal article(s) based on this preprint

17 Apr 2024
Soot aerosols from commercial aviation engines are poor ice-nucleating particles at cirrus cloud temperatures
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024,https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2441', Anonymous Referee #1, 07 Dec 2023
  • RC2: 'Comment on egusphere-2023-2441', Anonymous Referee #2, 19 Dec 2023
  • RC3: 'Comment on egusphere-2023-2441', Anonymous Referee #3, 29 Dec 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2441', Anonymous Referee #1, 07 Dec 2023
  • RC2: 'Comment on egusphere-2023-2441', Anonymous Referee #2, 19 Dec 2023
  • RC3: 'Comment on egusphere-2023-2441', Anonymous Referee #3, 29 Dec 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Zamin A. Kanji on behalf of the Authors (02 Feb 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (07 Feb 2024) by Jianzhong Ma
RR by Anonymous Referee #2 (08 Feb 2024)
RR by Anonymous Referee #1 (16 Feb 2024)
ED: Publish as is (21 Feb 2024) by Jianzhong Ma
AR by Baptiste Testa on behalf of the Authors (27 Feb 2024)

Journal article(s) based on this preprint

17 Apr 2024
Soot aerosols from commercial aviation engines are poor ice-nucleating particles at cirrus cloud temperatures
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024,https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji

Viewed

Total article views: 682 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
482 175 25 682 12 13
  • HTML: 482
  • PDF: 175
  • XML: 25
  • Total: 682
  • BibTeX: 12
  • EndNote: 13
Views and downloads (calculated since 06 Nov 2023)
Cumulative views and downloads (calculated since 06 Nov 2023)

Viewed (geographical distribution)

Total article views: 668 (including HTML, PDF, and XML) Thereof 668 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 17 Apr 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Laboratory experiments on the ice nucleation of real commercial aviation soot particles are investigated for their cirrus cloud formation potential. Our results show that aircraft emitted soot in the upper troposphere will be poor ice nucleating particles. Measuring the soot particle morphology and modifying their mixing state allows us to elucidate why these particles are ineffective at forming ice, in contrast to previously used soot surrogates.