Preprints
https://doi.org/10.5194/egusphere-2023-2421
https://doi.org/10.5194/egusphere-2023-2421
21 Nov 2023
 | 21 Nov 2023

Soil smoldering in temperate forests: A neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios

Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot

Abstract. Fire is considered as an essential climate variable, emitting greenhouse gas in the combustion process. Current global assessments of fire emissions traditionally rely on coarse remotely-sensed burned area data, along with biome-specific combustion completeness and emission factors, to provide near real-time information. However, large uncertainties persist regarding burned areas, biomass affected, and emission factors. Recent increases in resolution have improved previous estimates of burned areas and aboveground biomass, while increasing the information content used to derive emission factors, complemented by airborne sensors deployed in the Tropics. To date, temperate forests, characterized by a lower fire incidence and stricter aerial surveillance restrictions near wildfires, have received less attention. In this study, we leveraged the distinctive fire season of 2022, which impacted Western European temperate forests, to investigate fire emissions monitored by the atmospheric tower network. We examined the role of soil smoldering combustion responsible for higher carbon emissions, locally reported by firefighters but not accounted for in global fire emission budgets. We assessed the CO/CO2 ratio released by major fires in the Mediterranean, Atlantic pine, and Atlantic temperate forests of France. Our findings revealed low Modified Combustion Efficiency (MCE) for the two Atlantic temperate regions, supporting the assumption of heavy smoldering combustion. This type of combustion was associated with specific fire characteristics, such as long-lasting thermal fire signals, and affected ecosystems encompassing needle leaf species, peatlands, and superficial lignite deposits in the soils. Thanks to high-resolution data (approximately 10 meters) on burned areas, tree biomass, peatlands, and soil organic matter, we proposed a revised combustion emission framework consistent with the observed MCEs. Our estimates revealed that 6.15 MtCO2 (± 2.65) were emitted, with belowground stock accounting for 51.75 % (± 16.05). Additionally, we calculated a total emission of 1.14 MtCO (± 0.61), with 84.85 % (± 3.75) originating from belowground combustion. As a result, the carbon emissions from the 2022 fires in France amounted to 7.95 MteqCO2 (± 3.62). These values exceed by 2-fold the generic GFAS global estimates of 4.18 MteqCO2 (CO and CO2). Fires represent 1.97 % (± 0.89) of the country’s annual carbon footprint, corresponding to a reduction of 30 % of the forest carbon sink this year. Consequently, we conclude that current European fire emissions estimates should be revised to account for soil combustion in temperate forests. We also recommend the use of atmospheric mixing ratios as an effective monitoring system of prolonged soil fires that have the potential to reignite in the following weeks.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2421', Anonymous Referee #1, 06 Feb 2024
    • AC1: 'Reply on RC1', Lilian Vallet, 12 Jun 2024
  • RC2: 'Comment on egusphere-2023-2421', Matthew Kasoar, 15 May 2024
    • AC2: 'Reply on RC2', Lilian Vallet, 12 Jun 2024

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2421', Anonymous Referee #1, 06 Feb 2024
    • AC1: 'Reply on RC1', Lilian Vallet, 12 Jun 2024
  • RC2: 'Comment on egusphere-2023-2421', Matthew Kasoar, 15 May 2024
    • AC2: 'Reply on RC2', Lilian Vallet, 12 Jun 2024
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot

Data sets

Fire emissions in France for 2022 fire season Lilian Vallet and Florent Mouillot https://oreme.org/observation/foret/incendies/

Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot

Viewed

Total article views: 1,013 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
762 202 49 1,013 23 29
  • HTML: 762
  • PDF: 202
  • XML: 49
  • Total: 1,013
  • BibTeX: 23
  • EndNote: 29
Views and downloads (calculated since 21 Nov 2023)
Cumulative views and downloads (calculated since 21 Nov 2023)

Viewed (geographical distribution)

Total article views: 984 (including HTML, PDF, and XML) Thereof 984 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 23 Dec 2024
Download
Short summary
2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 MteqCO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of the country's annual carbon footprint, reducing forest carbon sink by 30 % this year.