Preprints
https://doi.org/10.5194/egusphere-2023-2369
https://doi.org/10.5194/egusphere-2023-2369
23 Oct 2023
 | 23 Oct 2023
Status: this preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).

Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field widened Michelson interferometers

Samuel Kaare Kristoffersen, William Edmund Ward, and Chris E. Meek

Abstract. Winds from two co-located two wind measuring instruments, a meteor radar and field widened Michelson interferometer at the Polar Environment Atmospheric Research Laboratory in Eureka, Nu, Canada (80° N, 86° W) are compared. The two instruments have very different temporal and spatial observational footprints. ERWIN provides airglow weighted winds from three nightglow emissions (O(1S) (oxygen green line, 557.7 nm), an O2 line (866 nm), and an OH line (843 nm)) on a ∼5 minute cadence for measurements at all three heights. As with Fabry-Perot airglow wind observations, these winds are airglow weighted winds from volumes of ∼8 km in height by ∼5 km radius. ERWIN’s higher accuracy (1–2 m/s for the O(1S) and OH emissions and ∼4 m/s for the O2 emissions) and higher cadence allows more detailed wind comparisons of airglow and radar winds than previously possible. The best correlation is achieved using Gaussian weighting of meteor radar winds with peak height and vertical width being optimally determined. Peak heights agree well with co-located SABER airglow observations. Offsets between the two instruments are ∼ 1–2 m/s for the O2 and O(1S) emissions and less than 0.3/s for the OH emission. Wind direction are highly correlated with a ∼ 1:1 correspondence. On average meteor radar wind magnitudes are ∼ 40 % larger than those from ERWIN. Gravity wave airglow brightness weighting of observations is discussed. Non-quadrature phase offsets between the airglow weighting and gravity wave associated wind and temperature perturbations will result in enhanced or reduced layer weighted wind amplitudes.

Samuel Kaare Kristoffersen et al.

Status: open (until 04 Jan 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2369', Anonymous Referee #1, 16 Nov 2023 reply

Samuel Kaare Kristoffersen et al.

Samuel Kaare Kristoffersen et al.

Viewed

Total article views: 108 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
73 29 6 108 4 4
  • HTML: 73
  • PDF: 29
  • XML: 6
  • Total: 108
  • BibTeX: 4
  • EndNote: 4
Views and downloads (calculated since 23 Oct 2023)
Cumulative views and downloads (calculated since 23 Oct 2023)

Viewed (geographical distribution)

Total article views: 106 (including HTML, PDF, and XML) Thereof 106 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 06 Dec 2023
Download
Short summary
In this paper, the relationship between observations from two instruments, a meteor radar and a field-widened Michelson interferometer (ERWIN) which provide complementary information on this region, is investigated. On average the ratio of ERWIN winds to meteor radar winds is ∼ 0.7. Differences between the wind observations are likely caused by variations in the airglow brightness associated with dissipating gravity waves.