Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-2308
https://doi.org/10.5194/egusphere-2023-2308
10 Nov 2023
 | 10 Nov 2023

Surface networks in the Arctic may miss a future "methane bomb"

Sophie Wittig, Antoine Berchet, Isabelle Pison, Marielle Saunois, and Jean-Daniel Paris

Abstract. The Arctic is warming up to four times faster than the global average, leading to significant environmental changes. Given the sensitivity of natural methane (CH4) sources to environmental conditions, increasing Arctic temperatures are expected to lead to higher CH4 emissions, particularly due to permafrost thaw and the exposure of organic matter. Some estimates therefore assume an Arctic "methane bomb" where vast CH4 amounts are rapidly released. This study examines the ability of the in-situ observation network to detect such events in the Arctic, a generally poorly constrained region. Using the FLEXPART atmospheric transport model and varying CH4 emission scenarios, we found that areas with a dense observation network could detect a "methane bomb" in 2 to 10 years. In contrast, regions with sparse coverage would need 10 to 30 years, with potential false positives in other areas.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

30 May 2024
Surface networks in the Arctic may miss a future methane bomb
Sophie Wittig, Antoine Berchet, Isabelle Pison, Marielle Saunois, and Jean-Daniel Paris
Atmos. Chem. Phys., 24, 6359–6373, https://doi.org/10.5194/acp-24-6359-2024,https://doi.org/10.5194/acp-24-6359-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The aim of this work is to analyse how accurately a "methane bomb" event could be detected with...
Share