24 Oct 2023
 | 24 Oct 2023
Status: this preprint is open for discussion.

Climate feedbacks with latitude derived from climatological data and theory

Philip Goodwin, Richard Williams, Paulo Ceppi, and B. B. Cael

Abstract. Most current methods for evaluating climate feedbacks utilise variation with time in Earth’s energy balance and surface temperatures, either from observations or Earth system model perturbation experiments. This study presents a new semi-empirical evaluation of Earth’s climate feedbacks at equilibrium, constrained instead by variation with latitude in recent mean climatology. Latitudinally binned surface temperature and outgoing radiation climatology provides a first order net climate feedback estimate  λ= -1.3±0.1 Wm-2 K-1, but this does not isolate the temperature influence on outgoing radiation from other factors. To isolate the surface temperature influence: First, we derive approximated functional relations for outgoing shortwave and longwave radiation in terms of surface temperature, surface relative humidity, fractional cloud amount, tropopause height and incident solar radiation. Second, we use observations of current zonal-mean climatology to constrain the relations and apply calculus to evaluate non-cloud climate feedbacks with latitude, including the Planck, water vapour-lapse rate and surface albedo. Our novel climatology-based evaluations of climate feedbacks weighted by the recent warming pattern, when combined with a recent estimate of cloud feedback from multiple lines of evidence, implies a global mean total net climate feedback λ= -1.1 (-0.8 to -1.4 at 66 % range) Wm-2 K-1 consistent with recent assessments of the literature. Our latitudinal method to constrain non-cloud climate feedback is independent of previous temporal approaches, using different observational lines of evidence, and so our method complements existing methods to help constrain climate feedback and climate sensitivity.

Philip Goodwin et al.

Status: open (until 10 Dec 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Philip Goodwin et al.

Model code and software

Energy_Balance_Climate_Feedback P. Goodwin, R. G. Williams, P. Ceppi, and B. B. Cael

Philip Goodwin et al.


Total article views: 165 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
121 36 8 165 3 4
  • HTML: 121
  • PDF: 36
  • XML: 8
  • Total: 165
  • BibTeX: 3
  • EndNote: 4
Views and downloads (calculated since 24 Oct 2023)
Cumulative views and downloads (calculated since 24 Oct 2023)

Viewed (geographical distribution)

Total article views: 159 (including HTML, PDF, and XML) Thereof 159 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 28 Nov 2023
Short summary
Climate feedbacks are normally evaluated by considering the change over time for Earth's energy balance and surface temperatures in the climate system. However, we only have around 1 degree Celsius of temperature change to utilise. Here, climate feedbacks are instead evaluated from the change in latitude of Earth's energy balance and surface temperatures, where we have around 70 degrees Celsius of temperature change to utilise.