12 Oct 2023
 | 12 Oct 2023
Status: this preprint is open for discussion.

Synoptic-intraseasonal variability control on high chlorophyll-a events in the Puyuhuapi Fjord, Chilean Patagonia

Reynier Bada-Diaz, Martín Jacques-Coper, Laura Farías, Diego Narváez, and Italo Masotti

Abstract. Intraseasonal climate variability as, the Madden-Julian Oscillation (MJO), and synoptic-scale systems modify the normal conditions of the atmosphere and ocean, causing anomalies in sea surface temperature (SST) and salinity (S) which could create an environment conducive to algal bloom events in fjord systems, which in some cases can be toxic (HABs). In this work, an analysis of the atmospheric forcings on the synoptic-to-intraseasonal scale (SY-IS), that precede and proceeds to extreme high chlorophyll-a (chl-a) events was made in the Puyuhuapi fjord (44.7º S 72.8º W), during the summer season (December–February, DJF) between the years 2010–2018. Extreme events of high chl-a are defined when chl-a anomalies exceed the 90th percentile, and day 0 was defined as the maximum anomalous value. Six extreme events, corresponding to 83 % of the total, were detected in the year 2016, a year with strong El Niño southern Oscillation (ENSO). From the analysis of the SY-IS patterns of persistent atmospheric anomalies during these 2016 events and their similarities, we detected that 4 events presented the characteristic of the passage of a low-pressure system, starting at least 7 days before the extreme chl-a event, with negative anomalies of sea level pressure and surface temperature, a change in wind direction and an increase in salinity at surface waters. we propose an atmospheric-oceanographic mechanism that induces favourable conditions for high phytoplanktonic activity in summertime: the passage of a low-pressure system, that weakens stratification and induces upwelling of deeper, colder and nutrient-rich waters favouring an increase in phytoplankton activity and the occurrence of extreme events of high chl-a in Puyuhuapi fjord. Furthermore, this work suggests that active phases 6 and 7 of the MJO might reinforce, on the SY-IS time scale, in DJF 2016. In the case of microalgae blooms, in addition to the well-known seasonal and interannual behaviors, it is important to superimpose the high-frequency variability. To improve the predictive ability of algal blooms and their relationship with climate conditions is essential for managing and mitigating their negative impacts on aquatic ecosystems, human health, and the economy.

Reynier Bada-Diaz et al.

Status: open (until 07 Dec 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2272', Anonymous Referee #1, 13 Nov 2023 reply

Reynier Bada-Diaz et al.

Reynier Bada-Diaz et al.


Total article views: 133 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
92 31 10 133 16 7 6
  • HTML: 92
  • PDF: 31
  • XML: 10
  • Total: 133
  • Supplement: 16
  • BibTeX: 7
  • EndNote: 6
Views and downloads (calculated since 12 Oct 2023)
Cumulative views and downloads (calculated since 12 Oct 2023)

Viewed (geographical distribution)

Total article views: 131 (including HTML, PDF, and XML) Thereof 131 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 29 Nov 2023
Short summary
In this research we perform an analysis of the phenomena that induce favourable conditions for the occurrence of algal bloom events in a fjord in Chilean Patagonia. We propose an atmospheric-oceanographic mechanism: the passage of a low-pressure system modifies conditions in the water column and establishes optimal conditions for the occurrence of an extreme bloom event. Establishing such an atmosphere-ocean mechanism is important, given the predictive capabilities of these atmospheric systems.