Preprints
https://doi.org/10.5194/egusphere-2023-2262
https://doi.org/10.5194/egusphere-2023-2262
13 Dec 2023
 | 13 Dec 2023

Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021

Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek

Abstract. In this study, a Mie theory-based model was built to predict the vertical profile of the aerosol optical properties, including the aerosol scattering coefficient, backscatter coefficient, extinction coefficient, and lidar ratio. The model utilizes ground-based in-situ measurements of the aerosol chemical composition and particle size distribution, as well as the meteorological data from the Weather Forecasts (ECMWF) as input values. These are all parameters readily obtained for ACTRIS sites and the aim of this study was to investigate their suitability for generating representative estimates of the lidar ratio, and then further improve the lidar retrievals by utilizing these estimates. The measurements were performed during the Ruisdael land-atmosphere interactions Intensive Trace-gas and Aerosol (RITA) campaign in the Netherlands in 2021. The calculated dry aerosol optical properties were validated against a Nephelometer with good agreements (R2 ≈ 0.9). The predicted ambient vertical profiles of aerosol optical properties were compared to retrievals by a multi-wavelength Raman lidar. Predicted and retrieved backscatter coefficients were usually comparable under conditions of a well-mixed boundary layer. The extinction coefficients and lidar ratios were retrieved by the Raman lidar only at a height above 800 m. The estimated lidar ratio profiles based on in-situ data connected reasonably well to the lidar profiles within the boundary layer, with differences on average ± 30 %. Our study shows that for well-mixed boundary layers, a representative lidar ratio can be estimated based on ground-based in-situ measurements of dry size distribution and chemical composition taking into account the hygroscopic growth and ambient humidity. This allows to extend extinction profiles to lower altitudes, where they cannot be retrieved, or for use with simple elastic backscatter lidar to derive extinction profiles. The proposed method could be further applied to predict aerosol optical depth and also might be beneficial for large-scale or global radiation simulations.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

30 Aug 2024
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024,https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Review of egusphere-2023-2262', Anonymous Referee #2, 05 Jan 2024
    • AC1: 'Reply on RC1', Xinya Liu, 10 May 2024
  • RC2: 'Comment on egusphere-2023-2262', Anonymous Referee #1, 22 Jan 2024
    • AC2: 'Reply on RC2', Xinya Liu, 10 May 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Review of egusphere-2023-2262', Anonymous Referee #2, 05 Jan 2024
    • AC1: 'Reply on RC1', Xinya Liu, 10 May 2024
  • RC2: 'Comment on egusphere-2023-2262', Anonymous Referee #1, 22 Jan 2024
    • AC2: 'Reply on RC2', Xinya Liu, 10 May 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Xinya Liu on behalf of the Authors (10 May 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (21 May 2024) by Andreas Petzold
RR by Anonymous Referee #1 (30 May 2024)
RR by Detlef Müller (14 Jun 2024)
ED: Publish subject to minor revisions (review by editor) (24 Jun 2024) by Andreas Petzold
AR by Xinya Liu on behalf of the Authors (03 Jul 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to technical corrections (17 Jul 2024) by Andreas Petzold
AR by Xinya Liu on behalf of the Authors (18 Jul 2024)  Manuscript 

Journal article(s) based on this preprint

30 Aug 2024
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024,https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek

Data sets

Datasets for " Evaluation of the TOF-ACSM-CV for PM1.0 and PM2.5 measurements during the RITA-2021 field campaign" Xinya Liu, Bas Henzing, Arjan Hensen, Danielle van Dinther, and Ulrike Dusek https://doi.org/10.5281/zenodo.7924288

Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek

Viewed

Total article views: 530 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
364 130 36 530 51 22 21
  • HTML: 364
  • PDF: 130
  • XML: 36
  • Total: 530
  • Supplement: 51
  • BibTeX: 22
  • EndNote: 21
Views and downloads (calculated since 13 Dec 2023)
Cumulative views and downloads (calculated since 13 Dec 2023)

Viewed (geographical distribution)

Total article views: 525 (including HTML, PDF, and XML) Thereof 525 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 18 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by Lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve Lidar measurements.