Preprints
https://doi.org/10.5194/egusphere-2023-2202
https://doi.org/10.5194/egusphere-2023-2202
19 Oct 2023
 | 19 Oct 2023

Uptake Behavior of Polycyclic Aromatic Compounds during Field Calibrations of the XAD-Based Passive Air Sampler Across Seasons and Locations

Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania

Abstract. Polycyclic aromatic compounds (PACs) continue to demand attention due to their widespread presence and well-established health implications. Given that incomplete combustion is a major contributor to PACs and inhalation constitutes a crucial human exposure pathway, a comprehensive understanding of the concentrations, spatial distributions, and fates of a broad range of PACs in the atmosphere is important. Passive air samplers (PASs) are a commonly utilized technique for PAC sampling and monitoring. In this study, we present the results from two one-year calibration experiments, one starting in summer and the other in winter, using a passive air sampler equipped with XAD resin as the sorbent (XAD-PAS). Throughout both experiments, PACs were consistently sorbed during the initial six-month period. However, the sorbed amounts for many PACs exhibited a decrease after half a year of deployment. Three hypotheses to explain this phenomenon were explored, including the uptake of atmospheric particles, evaporation from the sorbent, and reactions with photooxidants. All had to be rejected based on the obtained data, additional laboratory experiments and model results. Model simulations were further used to (i) confirm that a loss process must be invoked to explain the observed uptake behaviour and (ii) estimate the kinetics of that loss process for different PACs. Sampling rates (SRs) for 28 PACs derived from the linearized uptake curves during the first six months of deployment were comparable to those of other semi-volatile organic compounds obtained during the same calibration experiment, and they also demonstrate a consistent negative correlation with volatility. 

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

29 Jan 2024
Uptake behavior of polycyclic aromatic compounds during field calibrations of the XAD-based passive air sampler across seasons and locations
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024,https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2202', Anonymous Referee #1, 06 Nov 2023
  • RC2: 'Comment on egusphere-2023-2202', Anonymous Referee #2, 07 Nov 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2202', Anonymous Referee #1, 06 Nov 2023
  • RC2: 'Comment on egusphere-2023-2202', Anonymous Referee #2, 07 Nov 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Frank Wania on behalf of the Authors (27 Nov 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (28 Nov 2023) by Pierre Herckes
RR by Anonymous Referee #1 (28 Nov 2023)
ED: Publish as is (30 Nov 2023) by Pierre Herckes
AR by Frank Wania on behalf of the Authors (30 Nov 2023)

Journal article(s) based on this preprint

29 Jan 2024
Uptake behavior of polycyclic aromatic compounds during field calibrations of the XAD-based passive air sampler across seasons and locations
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024,https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania

Viewed

Total article views: 286 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
202 66 18 286 29 6 9
  • HTML: 202
  • PDF: 66
  • XML: 18
  • Total: 286
  • Supplement: 29
  • BibTeX: 6
  • EndNote: 9
Views and downloads (calculated since 19 Oct 2023)
Cumulative views and downloads (calculated since 19 Oct 2023)

Viewed (geographical distribution)

Total article views: 277 (including HTML, PDF, and XML) Thereof 277 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 29 Aug 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the amounts of PACs taken up in the device have been derived.