Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-214
https://doi.org/10.5194/egusphere-2023-214
15 Feb 2023
 | 15 Feb 2023

Observations and modelling of tidally generated high-frequency velocity fluctuations downstream of a channel constriction

Håvard Espenes, Pål Erik Isachsen, and Ole Anders Nøst

Abstract. We investigate data from an ADCP deployed in a constricted ocean channel showing a tidally dominated flow with intermittent velocity extrema during outflow from the constriction but not during inflow. A 2D numerical ocean model forced by tides is used to examine the spatial flow structure and underlying dynamical processes. We find that flow separation eddies generated near the tightest constriction point form a dipole pair which propagates downstream and drives the observed intermittent flow variability. The eddies, which are generated by an along-channel adverse pressure gradient, spin up for some time near the constriction until they develop local low pressures in their centres that are strong enough to modify the background along-channel pressure gradient significantly. When the dipole has propagated some distance away from the constriction, the conditions for flow separation are recovered, and new eddies are formed.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

29 Nov 2023
Observations and modeling of tidally generated high-frequency velocity fluctuations downstream of a channel constriction
Håvard Espenes, Pål Erik Isachsen, and Ole Anders Nøst
Ocean Sci., 19, 1633–1648, https://doi.org/10.5194/os-19-1633-2023,https://doi.org/10.5194/os-19-1633-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We show that tidally generated eddies generated near the constriction of a channel can drive a...
Share