05 Oct 2023
 | 05 Oct 2023

The long-term impact of transgressing planetary boundaries on biophysical atmosphere-land interactions

Markus Drüke, Wolfgang Lucht, Werner von Bloh, Stefan Petri, Boris Sakschewski, Arne Tobian, Sina Loriani, Sibyll Schaphoff, Georg Feulner, and Kirsten Thonicke

Abstract. Human activities have had a significant impact on Earth's systems and processes, leading to a transition of Earth's state from the relatively stable Holocene epoch to the Anthropocene. The planetary boundaries framework characterizes major risks of destabilization, particularly in the core dimensions of climate and biosphere change. Land system change, including deforestation and urbanization, alters ecosystems and impacts the water and energy cycle between land surface and atmosphere, while climate change can disrupt the balance of ecosystems and impact vegetation composition and soil carbon pools. These drivers also interact with each other, further exacerbating their impacts. Earth system models have been used recently to illustrate the risks and interacting effects of transgressing selected planetary boundaries, but a detailed analysis is still missing. Here, we study the impacts of long-term transgressions of the climate and land system change boundaries on the Earth system using an Earth system model with an incorporated detailed dynamic vegetation model. In our centennial-scale simulation analysis, we find that transgressing the land system change boundary results in increases in global temperatures and aridity. Furthermore, this transgression is associated with a substantial loss of vegetation carbon, exceeding 200 PgC, in contrast to conditions considered safe. Concurrently, the influence of climate change becomes evident as temperatures surge by 2.7–3.1 °C depending on the region. Notably, carbon dynamics are most profoundly affected within the large carbon reservoirs of the boreal permafrost areas, where carbon emissions peak at 150 PgC. While a restoration scenario to reduce human pressure to meet the planetary boundaries of climate change and land system change proves beneficial for carbon pools and global mean temperature, a transgression of these boundaries could lead to profoundly negative effects on the Earth system and the terrestrial biosphere. Our results suggest that respecting both boundaries is essential for safeguarding Holocene-like planetary conditions that characterize a resilient Earth system and are in accordance with the goals of the Paris Climate Agreement.

Markus Drüke et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2133', Anonymous Referee #1, 22 Oct 2023
  • RC2: 'Comment on egusphere-2023-2133', Anonymous Referee #2, 08 Nov 2023

Markus Drüke et al.


Total article views: 262 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
186 60 16 262 21 7 6
  • HTML: 186
  • PDF: 60
  • XML: 16
  • Total: 262
  • Supplement: 21
  • BibTeX: 7
  • EndNote: 6
Views and downloads (calculated since 05 Oct 2023)
Cumulative views and downloads (calculated since 05 Oct 2023)

Viewed (geographical distribution)

Total article views: 274 (including HTML, PDF, and XML) Thereof 274 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 28 Nov 2023
Short summary
The planetary boundary framework characterizes major risks of destabilization of the Earth system. Here we use the comprehensive Earth system model POEM to study the impact of the interacting boundaries for climate change and land system change. Our study shows the importance of long-term effects on carbon dynamics and climate, the need to investigate both boundaries simultaneously, and to generally keep both boundaries within acceptable ranges to avoid a catastrophic scenario for humanity.