Preprints
https://doi.org/10.5194/egusphere-2023-2050
https://doi.org/10.5194/egusphere-2023-2050
11 Dec 2023
 | 11 Dec 2023

A multi-instrument fuzzy logic boundary-layer top detection algorithm

Elizabeth N. Smith and Jacob T. Carlin

Abstract. Understanding the boundary-layer height and its dynamics is crucial for a wide array of applications spanning various fields. Accurate identification of the boundary-layer top contributes to improved air quality predictions, pollutant transport assessments, and enhanced numerical weather prediction through parameterization and assimilation techniques. Despite its significance, defining and observing the boundary-layer top remains challenging. Existing methods of estimating the boundary-layer height encompass radiosonde-based methods, radar-based retrievals, and more. As emerging boundary-layer observation platforms emerge, it is useful to reevaluate the efficacy of existing boundary-layer top detection methods and explore new ones.

This study introduces a fuzzy-logic algorithm that leverages the synergy of multiple remote-sensing boundary-layer profiling instruments. By harnessing the distinct advantages of each sensing platform, the proposed method enables accurate boundary-layer height estimation both during daytime and nocturnal conditions. The algorithm is benchmarked against radiosonde-derived boundary-layer top estimates obtained from balloon launches across diverse locations in Wisconsin, Oklahoma, and Louisiana during summer and fall. The findings reveal notable similarities between the results produced by the proposed fuzzy-logic algorithm and traditional radiosonde-based approaches. However, this study delves into the nuanced differences in their behavior, providing insightful analyses about the underlying causes of the observed discrepancies. The fuzzy-logic boundary-layer top detection algorithm, called BLISS-FL, is released publicly fostering collaboration and advancement within the research community.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

11 Jul 2024
A multi-instrument fuzzy logic boundary-layer-top detection algorithm
Elizabeth N. Smith and Jacob T. Carlin
Atmos. Meas. Tech., 17, 4087–4107, https://doi.org/10.5194/amt-17-4087-2024,https://doi.org/10.5194/amt-17-4087-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Boundary-layer height observations remain sparse in time and space. In this study we create a...
Share