Preprints
https://doi.org/10.5194/egusphere-2023-1926
https://doi.org/10.5194/egusphere-2023-1926
28 Aug 2023
 | 28 Aug 2023
Status: this preprint is open for discussion.

Peatland evaporation across hemispheres: contrasting controls and sensitivity to climate warming driven by plant functional types

Leeza Speranskaya, David I. Campbell, Peter M. Lafleur, and Elyn R. Humphreys

Abstract. Peatlands store disproportionally large amounts of carbon per unit area, a function that is dependent on maintaining high and stable water tables. Climate change is likely to negatively impact carbon storage in peatlands, in part due to increases in vapour pressure deficit (VPD) driving higher evaporation (E) rates. However, the response of E to increasing VPD depends on the dominant vegetation type within peatlands. In this study, we used multiple years of eddy covariance (EC) measurements to compare E regimes at two peatlands with contrasting vegetation types – Kopuatai bog in Aotearoa New Zealand, dominated by the vascular jointed wire rush Empodisma robustum, and Mer Bleue bog in Canada, a ‘typical’ shrub and moss-dominated Northern Hemisphere peatland. We examined seasonal variability in E and equilibrium E (Eeq), energy balance partitioning, and the response of E, evaporative fraction (EF), and canopy conductance (gc) to VPD. Mean annual E was 45 % lower than mean annual Eeq at Kopuatai, but only 16 % lower at Mer Bleue, demonstrating much greater limitations on E at Kopuatai. In addition, the mean midday (10:00–14:30) dry canopy Bowen ratio (β) at Kopuatai was 1.96, compared to 0.77 at Mer Bleue; therefore, the sensible heat flux (H) dominated over the latent heat flux (LE) at Kopuatai, and vice versa at Mer Bleue. The responses of E, EF, and gc to increasing VPD at Kopuatai differed from those at Mer Bleue in a way that resulted in stronger limitations on E above ~0.7 kPa at the former bog. The observed limitations at Kopuatai were attributed to strong stomatal control by E. robustum due to the rapid decrease in gc with increasing VPD, however surface E could also be limited by its dense standing litter. At Mer Bleue, however, E was only weakly limited at VPD > 2 kPa, likely due to weak stomatal control over transpiration by the sparse shrub canopy and relatively large surface E from Sphagnum carpets. As such, the results of this study suggest that E. robustum drives a greater “hydrological resistance” to increasing VPD than the vegetation at Mer Bleue, leading to greater water retention at Kopuatai. This may enable greater resilience of the carbon sink function at Kopuatai to climatic warming and drying than at Mer Bleue.

Leeza Speranskaya et al.

Status: open (until 02 Nov 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Leeza Speranskaya et al.

Data sets

Data sets for "Peatland evaporation across hemispheres: contrasting controls and sensitivity to climate warming driven by plant functional types" L. Speranskaya, D. I. Campbell, P. M. Lafleur, E. R. Humphreys https://doi.org/10.5281/zenodo.8226863

Leeza Speranskaya et al.

Viewed

Total article views: 212 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
144 61 7 212 6 6
  • HTML: 144
  • PDF: 61
  • XML: 7
  • Total: 212
  • BibTeX: 6
  • EndNote: 6
Views and downloads (calculated since 28 Aug 2023)
Cumulative views and downloads (calculated since 28 Aug 2023)

Viewed (geographical distribution)

Total article views: 208 (including HTML, PDF, and XML) Thereof 208 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 03 Oct 2023
Download
Short summary
Higher evaporation in peatlands has been predicted due to climatic drying. We determined whether the water-conservative vegetation at a Southern Hemisphere bog could cause a different response to dryness compared to a 'typical' Northern Hemisphere bog, using decades-long evaporation datasets from each site. At the southern bog, evaporation increased at a much lower rate with increasing dryness, suggesting that this peatland type may be more resilient to climate warming than northern bogs.