Preprints
https://doi.org/10.5194/egusphere-2023-1917
https://doi.org/10.5194/egusphere-2023-1917
30 Aug 2023
 | 30 Aug 2023

Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs)

Rona L. Thompson, Stephen A. Montzka, Martin K. Vollmer, Jgor Arduini, Molly Crotwell, Paul Krummel, Chris Lunder, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Stefan Reimann, Isaac Vimont, Hsiang Wang, Ray F. Weiss, and Dickon Young

Abstract. The hydroxyl radical (OH) largely determines the atmosphere’s oxidative capacity and, thus, the lifetimes of numerous trace gases, including methane (CH4). Hitherto, observation-based approaches for estimating the atmospheric oxidative capacity have primarily relied on using methyl chloroform (MCF), but as the atmospheric abundance of MCF has declined, the uncertainties associated with this method have increased. In this study, we examine the use of five hydrofluorocarbons (HFCs) (HFC-134a, HFC-152a, HFC-365mfc, HFC-245fa and HFC-32) in multi-species inversions, which assimilate three HFCs simultaneously, as an alternative method to estimate atmospheric OH. We find robust estimates of OH regardless of which combination of three HFCs are used in the inversions. Our results show that OH has remained fairly stable during our study period from 2004 to 2021, with variations of <2 % and no significant trend. Inversions including HFC-32 and HFC-152a (the shortest-lived species) indicate a small reduction in OH in 2020 (1.6 % ± 0.9 % relative to the mean over 2004–2021 and 0.6 ± 0.9 % lower than in 2019), but considering all inversions, the reduction was only 0.5 ± 1.1 % and OH was at a similar level to that in 2019.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

30 Jan 2024
Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs)
Rona L. Thompson, Stephen A. Montzka, Martin K. Vollmer, Jgor Arduini, Molly Crotwell, Paul B. Krummel, Chris Lunder, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Stefan Reimann, Isaac Vimont, Hsiang Wang, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 24, 1415–1427, https://doi.org/10.5194/acp-24-1415-2024,https://doi.org/10.5194/acp-24-1415-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The hydroxyl radical (OH) determines the atmospheric lifetimes of numerous species including...
Share