Preprints
https://doi.org/10.5194/egusphere-2023-1894
https://doi.org/10.5194/egusphere-2023-1894
13 Sep 2023
 | 13 Sep 2023

Secondary organic aerosol formed by EURO 5 gasoline vehicle emissions: chemical composition and gas-to-particle phase partitioning

Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D’Anna

Abstract. In this study we investigated the photo-oxidation of EURO 5 gasoline vehicle emissions during cold urban, hot urban and motorway Artemis cycles. The experiments were conducted in an environmental chamber with average OH concentrations ranging between 6.6x105–2.3x106 molecules cm-3, relative humidity (RH) 40–55 % and temperatures between 22–26 °C. A proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) and the chemical analysis of aerosol on-line (CHARON) inlet coupled with a PTR-ToF-MS were used for the gas and particle phase measurements respectively. This is the first time that CHARON inlet was used for the identification of the secondary organic aerosol (SOA) produced from vehicle emissions. The secondary organic gas phase products ranged between C1 and C9 with 1 to 4 atoms of oxygen and were mainly composed of small oxygenated C1–C3 species. The formed SOA contained compounds from C1 to C14, having 1 to 6 atoms of oxygen and the products’ distribution was centered at C5. Organonitrites and organonitrates contributed 6–7 % of the SOA concentration. Relatively high concentrations of ammonium nitrate (35–160 µg m-3) were formed. The nitrate fraction related to organic nitrate compounds was 0.12–0.20, while ammonium linked to organic ammonium compounds was estimated only during one experiment reaching a fraction of 0.19. The produced SOA exhibited logC* values between 2 and 5. Comparing our results to the theoretical estimations, we observed differences of 1–3 orders of magnitude indicating that additional parameters such as RH, particulate water content, aerosol hygroscopicity, and possible reactions in the particulate phase may affect the gas-to-particle partitioning.

Journal article(s) based on this preprint

29 Feb 2024
Secondary organic aerosol formed by Euro 5 gasoline vehicle emissions: chemical composition and gas-to-particle phase partitioning
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024,https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D’Anna

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1894', Anonymous Referee #1, 23 Oct 2023
  • RC2: 'Comment on egusphere-2023-1894', Anonymous Referee #2, 13 Nov 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1894', Anonymous Referee #1, 23 Oct 2023
  • RC2: 'Comment on egusphere-2023-1894', Anonymous Referee #2, 13 Nov 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Evangelia Kostenidou on behalf of the Authors (25 Dec 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to technical corrections (03 Jan 2024) by Sergey A. Nizkorodov
AR by Evangelia Kostenidou on behalf of the Authors (10 Jan 2024)  Manuscript 

Journal article(s) based on this preprint

29 Feb 2024
Secondary organic aerosol formed by Euro 5 gasoline vehicle emissions: chemical composition and gas-to-particle phase partitioning
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024,https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D’Anna
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D’Anna

Viewed

Total article views: 445 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
298 125 22 445 44 14 14
  • HTML: 298
  • PDF: 125
  • XML: 22
  • Total: 445
  • Supplement: 44
  • BibTeX: 14
  • EndNote: 14
Views and downloads (calculated since 13 Sep 2023)
Cumulative views and downloads (calculated since 13 Sep 2023)

Viewed (geographical distribution)

Total article views: 439 (including HTML, PDF, and XML) Thereof 439 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 29 Feb 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. In this work the chemical composition of secondary VOC and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the formed SOA was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role to the gas-to-particle partitioning.