Preprints
https://doi.org/10.5194/egusphere-2023-1851
https://doi.org/10.5194/egusphere-2023-1851
04 Sep 2023
 | 04 Sep 2023
Status: this preprint has been withdrawn by the authors.

Response of PM2.5 chemical composition to variations in anthropogenic emissions and meteorological conditions during COVID-19 lockdown

Yitian Gong, Haijun Zhou, Xi Chun, Zhiqiang Wan, Jingwen Wang, and Chun Liu

Abstract. PM2.5 is a primary atmospheric pollutant with various sources and complicated chemical compositions that are influenced by various factors, such as anthropogenic emissions (AE) and meteorological conditions (MC). MC have significant impacts on variations of the atmospheric pollutant; therefore, emission reduction policies and ambient air quality are non-linearly correlated, which hinders accurate assessments of the effectiveness of control measures. The online observations of PM2.5 and its chemical composition were conducted in Hohhot, China, from December 1, 2019, to February 29, 2020, to investigate PM2.5 chemical compositions respond to the variation of AE and MC. Moreover, the random forest (RF) model was used to quantify the AE and MC contributions of PM2.5 and its chemical composition during severe hazes and the COVID-19 pandemic lockdown period. During the clean period, MC contributed -124 % to PM2.5 concentrations, indicating that MC promoted PM2.5 dispersion. During severe pollution episodes, MC contributed 49 % to PM2.5 concentrations, indicating that MC promoted PM2.5 accumulation. The inorganic aerosols (SO42-, NO3-, and NH4+) showed the strongest response to MC. MC had significant contributions to the PM2.5 (36 %), SO42- (32 %), NO3- (29 %), NH4+ (28 %), OC (22 %), and SOC (17 %). From the pre-lockdown to lockdown period, AE (MC) contributed 52 % (48 %), 81 % (19 %), 48 % (52 %), 68 % (32 %), 59 % (41 %), and 288 % (-188 %) to the PM2.5, SO42-, NO3-, NH4+, OC, and SOC variations, respectively. The variations of MC (especially the increase in relative humidity) rapidly generated meteorologically sensitive species (SO42-, NO3-, and NH4+), which led to severe winter pollution. This study provides reference for assessing the net benefits of emission reduction measures for PM2.5 and its chemical compositions.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download

This preprint has been withdrawn.

Short summary
This study makes a significant contribution to the literature because evaluations of the...
Share