Preprints
https://doi.org/10.5194/egusphere-2023-1807
https://doi.org/10.5194/egusphere-2023-1807
21 Aug 2023
 | 21 Aug 2023

Water Vapor Measurements inside clouds and storms using a Differential Absorption Radar

Luis F. Millan, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel

Abstract. NASA’s Vapor In-cloud Profiling Radar (VIPR) is a tunable G-band radar designed for in-cloud and precipitation humidity remote sensing. VIPR estimates humidity using the differential absorption radar (DAR) technique. This technique exploits the difference between atmospheric attenuation at different frequencies (“on” and “off” an absorption line) and combines it with the ranging capabilities of the radar to estimate the absorbing gas concentration along the radar path.

We analyze the VIPR humidity measurements during two NASA field campaigns: (1) the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign, with the objective of studying wintertime snowstorms focusing on East Coast cyclones; and (2) the Synergies Of Active optical and Active microwave Remote Sensing Experiment (SOA2RSE) campaign which studied the synergy between DAR (VIPR) and differential absorption lidar (DIAL, the High altitude Lidar Observatory – HALO) measurements. We discuss a comparison with dropsondes launched during these campaigns as well as an intercomparison against the ERA5 reanalysis fields. Thus, this study serves as an additional evaluation of ERA5 lower tropospheric humidity fields. In addition, we show a smooth transition in water vapor profiles between the in-cloud and clear-sky measurements obtained from VIPR and HALO respectively, which highlights the complementary nature of these two measurement techniques for future airborne and space-based missions.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

26 Jan 2024
Water vapor measurements inside clouds and storms using a differential absorption radar
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024,https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
In this study, we describe and validate a new technique where three radar tones are used to...
Share