Preprints
https://doi.org/10.5194/egusphere-2023-173
https://doi.org/10.5194/egusphere-2023-173
06 Mar 2023
 | 06 Mar 2023
Status: this preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).

A Multi-Parameter Dynamical Diagnostics for Upper Tropospheric and Lower Stratospheric Studies

Luis F. Millan, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn

Abstract. Ozone trend estimates have shown large uncertainties in the upper troposphere/lower stratosphere (UTLS) region despite multi-decadal observations available from ground-based, balloon, aircraft, and satellite platforms. These uncertainties arise from large natural variability driven by dynamics (reflected in tropopause and jet variations) as well as the strength in constituent transport and mixing. Additionally, despite all the community efforts there is still a lack of representative high-quality global UTLS measurements to capture this variability.

The Stratosphere-troposphere Processes And their Role in Climate (SPARC) Observed Composition Trends and Variability in the UTLS (OCTAV-UTLS) activity aims to reduce uncertainties in UTLS composition trend estimates by accounting for this dynamically induced variability. In this paper, we describe the production of dynamical diagnostics using meteorological information from reanalysis fields that facilitate mapping observations from several platforms into numerous geophysically-based coordinates (including tropopause and upper tropospheric jet relative coordinates). Suitable coordinates should increase the homogeneity of the air masses analyzed together, thus reducing the uncertainty caused by spatio-temporal sampling biases in the quantification of UTLS composition trends. This approach thus provides a framework for comparing measurements with diverse sampling patterns and leverages the meteorological context to derive maximum information on UTLS composition and trends and its relationships to dynamical variability.

The dynamical diagnostics presented here are the first comprehensive set describing the meteorological context for multi-decadal observations by ozonesondes, lidar, aircraft, and satellite measurements in order to study the impact of dynamical processes on observed UTLS trends by different sensors on different platforms. Examples using these diagnostics to map multi-platform datasets into different geophysically-based coordinate systems are provided. The diagnostics presented can also be applied to analysis of greenhouse gases other than ozone that are relevant to surface climate and UTLS chemistry.

Luis F. Millan et al.

Status: open (until 10 Apr 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-173', Anonymous Referee #1, 27 Mar 2023 reply

Luis F. Millan et al.

Luis F. Millan et al.

Viewed

Total article views: 158 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
104 47 7 158 3 3
  • HTML: 104
  • PDF: 47
  • XML: 7
  • Total: 158
  • BibTeX: 3
  • EndNote: 3
Views and downloads (calculated since 06 Mar 2023)
Cumulative views and downloads (calculated since 06 Mar 2023)

Viewed (geographical distribution)

Total article views: 148 (including HTML, PDF, and XML) Thereof 148 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 29 Mar 2023
Download
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geo-physically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.