Preprints
https://doi.org/10.5194/egusphere-2023-1727
https://doi.org/10.5194/egusphere-2023-1727
18 Sep 2023
 | 18 Sep 2023

Technical Note: Analytical Solution for Well Water Response to Earth Tides in Leaky Aquifers with Storage and Compressibility in the Aquitard

Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau

Abstract. In recent years, there has been a growing interest in utilizing the groundwater response to Earth tides as a means to estimate subsurface properties. However, existing analytical models have been insufficient in accurately capturing realistic physical conditions. This study presents a new analytical solution to calculate groundwater response to Earth tide strains, including storage and compressibility of the aquitard, borehole storage and skin effects. We investigate the effects of aquifer and aquitard parameters on well water response to Earth tides at two dominant frequencies (O1 and M2) and compare our results with hydraulic parameters obtained from a pumping test. Inversion of the six hydro-geomechanical parameters from amplitude response and phase shift of both semi-diurnal and diurnal tides provides relevant information about aquifer transmissivity, storativity, well skin effect, aquitard hydraulic conductivity and diffusivity. The new model is able to reproduce previously unexplained observations of the amplitude and frequency responses. We emphasize the usefulness in developing relevant methodology to use the groundwater response to natural drivers for characterizing hydrogeological systems.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

29 Feb 2024
Technical note: Analytical solution for well water response to Earth tides in leaky aquifers with storage and compressibility in the aquitard
Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 1041–1054, https://doi.org/10.5194/hess-28-1041-2024,https://doi.org/10.5194/hess-28-1041-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Characterizing aquifer systems is challenging because it is difficult to obtain in-situ...
Share