Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-1608
https://doi.org/10.5194/egusphere-2023-1608
16 Aug 2023
 | 16 Aug 2023

Identification of stratospheric disturbance information in China based on round-trip intelligent sounding system

Yang He, Xiaoqian Zhu, Zheng Sheng, and Mingyuan He

Abstract. Assessing the role of physical processes in the stratosphere under climate change has been one of the hottest topics over the past few decades. However, due to the limitation of detection technique, the stratospheric disturbance information from in situ observation is still relatively scarce. The round-trip intelligent sounding system (RTISS) is a new detection technology developed in recent years, which can capture atmospheric fine structure information of the troposphere and stratosphere through the three-stage (rising, flat-floating, and falling) detection. Based on the structure function and singular measure, we quantify the stratospheric small-scale gravity wave (SGW) over China by Hurst parameter and intermittency parameter, and discuss its relationship with inertia-gravity wave (IGW). The results show that the enhancement of the SGWs in the stratosphere is accompanied by the weakening of the IGWs below, which is closely related to the Kelvin-Helmholtz instability (KHI), and is conducive to the transport of ozone to higher altitudes from lower stratosphere. The parameter space (H1, C1) shows sufficient potential in the analysis of stratospheric disturbances and their role in material transport and energy transfer.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

27 Mar 2024
Identification of stratospheric disturbance information in China based on the round-trip intelligent sounding system
Yang He, Xiaoqian Zhu, Zheng Sheng, and Mingyuan He
Atmos. Chem. Phys., 24, 3839–3856, https://doi.org/10.5194/acp-24-3839-2024,https://doi.org/10.5194/acp-24-3839-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The round-trip intelligent sounding system (RTISS) is a new detection technology developed in...
Share