Preprints
https://doi.org/10.48550/arXiv.2306.05377
https://doi.org/10.48550/arXiv.2306.05377
04 Aug 2023
 | 04 Aug 2023

Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1), part I: dust budget analyses and the impacts of a revised coupling scheme

Hui Wan, Kai Zhang, Christopher J. Vogl, Carol S. Woodward, Richard C. Easter, Philip J. Rasch, Yan Feng, and Hailong Wang

Abstract. An earlier study evaluating the dust life cycle in the Energy Exascale Earth System Model (E3SM) Atmosphere Model version 1 (EAMv1) has revealed that the simulated global mean dust lifetime is substantially shorter when higher vertical resolution is used, primarily due to significant strengthening of dust dry removal in source regions. This paper demonstrates that the sequential splitting of aerosol emissions, dry removal, and turbulent mixing in the model's time integration loop, especially the calculation of dry removal after surface emissions and before turbulent mixing, is the primary reason for the vertical resolution sensitivity reported in that earlier study. Based on this reasoning, we propose a simple revision to the numerical process coupling scheme, which moves the application of the surface emissions to after dry removal and before turbulent mixing. The revised scheme allows newly emitted particles to be transported aloft by turbulence before being removed from the atmosphere, and hence better resembles the dust life cycle in the real world.

Sensitivity experiments show that the revised process coupling substantially weakens dry removal and strengthens vertical mixing in dust source regions. It also strengthens the large-scale transport from source to non-source regions, strengthens dry removal outside the source regions, and strengthens wet removal and activation globally. In wind-nudged simulations of the year 2010 with 1-degree horizontal grid spacing and 72 layers, the revised process coupling leads to a 39 % increase in the global annual mean dust burden and an increase of dust lifetime from 1.9 days to 2.6 days when tuning parameters are kept unchanged.

The revised process coupling is implemented for all aerosol species in EAMv1. The same qualitative changes in process rates are seen in dust, sea salt, marine organic aerosols (MOA), black carbon (BC), and primary organic aerosols (POA), as these species have significant sources from surface emissions. Quantitatively, the changes are large for dust and sea salt but are considerably smaller for the predominantly submicron species (i.e., MOA, BC, and POA). The impacts on sulfate and secondary organic aerosols are very small, as these species have little or no surface emissions.

Journal article(s) based on this preprint

16 Feb 2024
Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 1: Dust budget analyses and the impacts of a revised coupling scheme
Hui Wan, Kai Zhang, Christopher J. Vogl, Carol S. Woodward, Richard C. Easter, Philip J. Rasch, Yan Feng, and Hailong Wang
Geosci. Model Dev., 17, 1387–1407, https://doi.org/10.5194/gmd-17-1387-2024,https://doi.org/10.5194/gmd-17-1387-2024, 2024
Short summary
Hui Wan, Kai Zhang, Christopher J. Vogl, Carol S. Woodward, Richard C. Easter, Philip J. Rasch, Yan Feng, and Hailong Wang

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1330', Anonymous Referee #1, 22 Aug 2023
    • AC1: 'Reply on RC1', Hui Wan, 27 Oct 2023
  • RC2: 'Knowledge worth spreading', Anonymous Referee #2, 05 Sep 2023
    • AC2: 'Reply on RC2', Hui Wan, 27 Oct 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1330', Anonymous Referee #1, 22 Aug 2023
    • AC1: 'Reply on RC1', Hui Wan, 27 Oct 2023
  • RC2: 'Knowledge worth spreading', Anonymous Referee #2, 05 Sep 2023
    • AC2: 'Reply on RC2', Hui Wan, 27 Oct 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Hui Wan on behalf of the Authors (13 Dec 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to technical corrections (21 Dec 2023) by Axel Lauer
AR by Hui Wan on behalf of the Authors (22 Dec 2023)  Author's response   Manuscript 

Journal article(s) based on this preprint

16 Feb 2024
Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 1: Dust budget analyses and the impacts of a revised coupling scheme
Hui Wan, Kai Zhang, Christopher J. Vogl, Carol S. Woodward, Richard C. Easter, Philip J. Rasch, Yan Feng, and Hailong Wang
Geosci. Model Dev., 17, 1387–1407, https://doi.org/10.5194/gmd-17-1387-2024,https://doi.org/10.5194/gmd-17-1387-2024, 2024
Short summary
Hui Wan, Kai Zhang, Christopher J. Vogl, Carol S. Woodward, Richard C. Easter, Philip J. Rasch, Yan Feng, and Hailong Wang

Data sets

EAMv1 output from simulations using tag v1_cflx_2021: annual averages Hui Wan and Kai Zhang https://doi.org/10.5281/zenodo.7996742

EAMv1 output from simulations using tag v1_cflx_2021: instantaneous values Hui Wan and Kai Zhang https://doi.org/10.5281/zenodo.8000745

Model code and software

EAMv1 code with revised aerosol process coupling (tag v1_cflx_2021) Hui Wan https://doi.org/10.5281/zenodo.7995850

Hui Wan, Kai Zhang, Christopher J. Vogl, Carol S. Woodward, Richard C. Easter, Philip J. Rasch, Yan Feng, and Hailong Wang

Viewed

Since the preprint corresponding to this journal article was posted outside of Copernicus Publications, the preprint-related metrics are limited to HTML views.

Total article views: 178 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
178 0 0 178 2 1
  • HTML: 178
  • PDF: 0
  • XML: 0
  • Total: 178
  • BibTeX: 2
  • EndNote: 1
Views and downloads (calculated since 04 Aug 2023)
Cumulative views and downloads (calculated since 04 Aug 2023)

Viewed (geographical distribution)

Since the preprint corresponding to this journal article was posted outside of Copernicus Publications, the preprint-related metrics are limited to HTML views.

Total article views: 180 (including HTML, PDF, and XML) Thereof 180 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 04 Apr 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Sophisticated numerical models of the Earth's atmosphere include representations of many physical and chemical processes. In numerical simulations, these processes need to be calculated in a certain sequence. This study reveals the weaknesses of the sequence of calculations used for aerosol processes in a global atmosphere model. A revision of the sequence is proposed, and its impacts on the simulated global aerosol climatology are evaluated.