Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-1225
https://doi.org/10.5194/egusphere-2023-1225
13 Jun 2023
 | 13 Jun 2023

Molecular fingerprints and health risks of home-use incense burning smoke

Kai Song, Rongzhi Tang, Jingshun Zhang, Zichao Wan, Yuan Zhang, Kun Hu, Yuanzheng Gong, Daqi Lv, Sihua Lu, Yu Tan, Ruifeng Zhang, Ang Li, Shuyuan Yan, Shichao Yan, Baoming Fan, Wenfei Zhu, Chak K. Chan, and Song Guo

Abstract. The burning of incense for home use is a widespread practice that has been shown to have significant negative impacts on human health and air quality. However, there is a lack of understanding regarding its emission profiles and associated health risks. To address this knowledge gap, we utilized a state-of-the-art thermal desorption comprehensive two-dimensional gas chromatography-mass spectrometer (TD-GC×GC-MS) to (semi-)quantify the emission factors (EFs) of 317 volatile compounds and thoroughly investigate the organic profiles of incense burning smoke across a full-volatility range. Results showed that toluene (70.8 ± 35.7 μg g-1) is the most abundant compound in incensing-burning smoke, followed by benzene, furfural, and phenol. Phenol, toluene, furfural, 2-furanmethanol, benzene, and benzyl alcohol are the main contributors to ozone and secondary organic aerosol (SOA) estimation. Intermediate volatility organic compounds (IVOCs) accounted for 19.2 % of the total EFs, but 40.0 % of the estimated SOA. Additionally, a novel pixel-based method, combined with aroma analysis, revealed that furfural can act as a key tracer of incense burning, and is responsible for the distinctive flavor of incense smoke. High bioaccumulation potential (BAP) assessment using pixel-based partition coefficient estimation revealed that acenaphthylene, dibenzofuran, and phthalate esters (PAEs) are chemicals of high-risk concern and warrant further control. Our results highlight the critical importance of investigating home-use incense burning and provide new insights into the health impacts of incense burning smoke by novel approaches.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

01 Nov 2023
Molecular fingerprints and health risks of smoke from home-use incense burning
Kai Song, Rongzhi Tang, Jingshun Zhang, Zichao Wan, Yuan Zhang, Kun Hu, Yuanzheng Gong, Daqi Lv, Sihua Lu, Yu Tan, Ruifeng Zhang, Ang Li, Shuyuan Yan, Shichao Yan, Baoming Fan, Wenfei Zhu, Chak K. Chan, Maosheng Yao, and Song Guo
Atmos. Chem. Phys., 23, 13585–13595, https://doi.org/10.5194/acp-23-13585-2023,https://doi.org/10.5194/acp-23-13585-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Incense burning is a common practice in Asia, posing great threats to human health and air...
Share