the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying riming from airborne data during HALO-(AC)3
Nina Maherndl
Manuel Moser
Johannes Lucke
Mario Mech
Nils Risse
Imke Schirmacher
Maximilian Maahn
Abstract. Riming is a key precipitation formation process in mixed-phase clouds by efficiently converting cloud liquid to ice water. Here, we present two methods to quantify riming of ice particles from airborne observations with the normalized rime mass, which is the ratio of rime mass to the mass of a size-equivalent spherical graupel particle. We use data obtained during the HALO-(AC)3 aircraft campaign, where two aircraft were collecting spatially and temporally closely collocated radar and in situ measurements over the Fram Strait west of Svalbard in spring 2022. The first method is based on an inverse Optimal Estimation algorithm to retrieve the normalized rime mass from a closure between cloud radar and in situ measurements during these collocated flight segments ("combined method"). The second method relies on in situ observations only, by relating the normalized rime mass to optical particle shape measurements ("in situ method"). We find good agreement between both methods during collocated flight segments with median normalized rime masses of 0.018 and 0.016 (mean values of 0.027 and 0.028) for combined and in situ method, respectively. Assuming particles with a normalized rime mass smaller 0.01 to be unrimed, we obtain average rimed fractions of 77 % and 75 %. Although in situ measurement volumes are in the range of a few cm3 and therefore much smaller than the radar volume (about 45 m footprint diameter), we assume they are representative of the radar volume. When this assumption is not met due to less homogeneous conditions, discrepancies between the two methods result. We compare normalized rime mass results with meteorological and cloud parameters and show the performance of the methods in two case studies, 1) a collocated segment in cold air outbreak conditions and 2) an in situ only flight close to a polar low. We find that higher normalized rime masses correlate with streaks of higher radar reflectivity. We also observe rimed particles in regions without liquid water, suggesting that particles were rimed in a liquid layer above and precipitated. The methods presented improve our ability to quantify riming from aircraft observations.
- Preprint
(31241 KB) - Metadata XML
- BibTeX
- EndNote
Nina Maherndl et al.
Status: final response (author comments only)
-
RC1: 'Comment on egusphere-2023-1118', Anonymous Referee #2, 27 Oct 2023
The comment was uploaded in the form of a supplement: https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1118/egusphere-2023-1118-RC1-supplement.pdf
- RC2: 'Comment on egusphere-2023-1118', Anonymous Referee #1, 14 Nov 2023
Nina Maherndl et al.
Nina Maherndl et al.
Viewed
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
198 | 70 | 10 | 278 | 7 | 5 |
- HTML: 198
- PDF: 70
- XML: 10
- Total: 278
- BibTeX: 7
- EndNote: 5
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1