Preprints
https://doi.org/10.5194/egusphere-2022-880
https://doi.org/10.5194/egusphere-2022-880
06 Sep 2022
 | 06 Sep 2022

Online measurements of cycloalkanes based on NO+ chemical ionization in proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS)

Yubin Chen, Bin Yuan, Chaomin Wang, Sihang Wang, Xianjun He, Caihong Wu, Xin Song, Yibo Huangfu, Xiao-Bing Li, Yijia Liao, and Min Shao

Abstract. Cycloalkanes are important trace hydrocarbons existing in the atmosphere, and they are considered as a major class of intermediate volatile organic compounds (IVOCs). Laboratory experiments showed that the yields of secondary organic aerosols (SOA) from oxidation of cycloalkanes are relatively higher than acyclic alkanes with the same carbon number. However, measurements of cycloalkanes in the atmosphere are still challenging at present. In this study, we show that online measurements of cycloalkanes can be achieved using proton transfer reaction time-of-flight mass spectrometry with NO+ chemical ionization (NO+ PTR-ToF-MS). Cyclic and bicyclic alkanes are ionized with NO+ via hydride ion transfer leading to major product ions of CnH2n-1+ and CnH2n-3+, respectively. As isomers of cycloalkanes, alkenes undergoes association reactions with major product ions of CnH2n•(NO)+, and concentrations of 1-alkenes and trans-2-alkenes in the atmosphere are usually significantly lower than cycloalkanes (about 25 % and <5 %, respectively), as the result inducing little interference to cycloalkanes detection in the atmosphere. Calibration of various cycloalkanes show similar sensitivities, associated with small humidity dependence. Appling this method, cycloalkanes were successfully measured at an urban site in southern China and a chassis dynamometer study for vehicular emissions. Concentrations of both cyclic and bicyclic alkanes are significant in urban air and vehicular emissions, with comparable cyclic alkanes/acyclic alkanes ratios between urban air and gasoline vehicles. These results demonstrates that NO+ PTR-ToF-MS provides a new complementary approach for fast characterization of cycloalkanes in both ambient air and emission sources, which can be helpful to fill the gap in understanding importance of cycloalkanes in the atmosphere.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

02 Dec 2022
Online measurements of cycloalkanes based on NO+ chemical ionization in proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS)
Yubin Chen, Bin Yuan, Chaomin Wang, Sihang Wang, Xianjun He, Caihong Wu, Xin Song, Yibo Huangfu, Xiao-Bing Li, Yijia Liao, and Min Shao
Atmos. Meas. Tech., 15, 6935–6947, https://doi.org/10.5194/amt-15-6935-2022,https://doi.org/10.5194/amt-15-6935-2022, 2022
Short summary
Yubin Chen, Bin Yuan, Chaomin Wang, Sihang Wang, Xianjun He, Caihong Wu, Xin Song, Yibo Huangfu, Xiao-Bing Li, Yijia Liao, and Min Shao

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-880', Anonymous Referee #1, 30 Sep 2022
  • RC2: 'Comment on egusphere-2022-880', Anonymous Referee #2, 12 Oct 2022
  • RC3: 'Comment on egusphere-2022-880', Anonymous Referee #3, 18 Oct 2022

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-880', Anonymous Referee #1, 30 Sep 2022
  • RC2: 'Comment on egusphere-2022-880', Anonymous Referee #2, 12 Oct 2022
  • RC3: 'Comment on egusphere-2022-880', Anonymous Referee #3, 18 Oct 2022

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Bin Yuan on behalf of the Authors (15 Nov 2022)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (17 Nov 2022) by Mingjin Tang
AR by Bin Yuan on behalf of the Authors (18 Nov 2022)  Manuscript 

Journal article(s) based on this preprint

02 Dec 2022
Online measurements of cycloalkanes based on NO+ chemical ionization in proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS)
Yubin Chen, Bin Yuan, Chaomin Wang, Sihang Wang, Xianjun He, Caihong Wu, Xin Song, Yibo Huangfu, Xiao-Bing Li, Yijia Liao, and Min Shao
Atmos. Meas. Tech., 15, 6935–6947, https://doi.org/10.5194/amt-15-6935-2022,https://doi.org/10.5194/amt-15-6935-2022, 2022
Short summary
Yubin Chen, Bin Yuan, Chaomin Wang, Sihang Wang, Xianjun He, Caihong Wu, Xin Song, Yibo Huangfu, Xiao-Bing Li, Yijia Liao, and Min Shao
Yubin Chen, Bin Yuan, Chaomin Wang, Sihang Wang, Xianjun He, Caihong Wu, Xin Song, Yibo Huangfu, Xiao-Bing Li, Yijia Liao, and Min Shao

Viewed

Total article views: 362 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
252 94 16 362 32 3 10
  • HTML: 252
  • PDF: 94
  • XML: 16
  • Total: 362
  • Supplement: 32
  • BibTeX: 3
  • EndNote: 10
Views and downloads (calculated since 06 Sep 2022)
Cumulative views and downloads (calculated since 06 Sep 2022)

Viewed (geographical distribution)

Total article views: 355 (including HTML, PDF, and XML) Thereof 355 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 31 Aug 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
In this study, we demonstrate selective online measurements of cycloalkanes can be achieved using proton transfer reaction time-of-flight mass spectrometry with NO+ chemical ionization (NO+ PTR-ToF-MS), with fast response and low detection limits. Applications of this method in both urban air and emission sources will be shown.