Preprints
https://doi.org/10.5194/egusphere-2022-877
https://doi.org/10.5194/egusphere-2022-877
04 Oct 2022
 | 04 Oct 2022

Seasonal Controls on Isolated Convective Storm Drafts, Precipitation Intensity, and Life Cycle As Observed During GoAmazon2014/5

Scott E. Giangrande, Thiago Biscaro, and John M. Peters

Abstract. Isolated deep convective cloud life cycle and seasonal changes in storm properties are observed for daytime events during the DOE-ARM GoAmazon2014/5 campaign to understand controls on storm behavior. Storm life cycles are documented using surveillance radar from initiation through maturity and dissipation. Vertical air velocity estimates are obtained from radar wind profiler overpasses, with the storm environment informed by radiosondes.

Dry season storm conditions favored reduced morning shallow cloud coverage and larger low level convective available potential energy (CAPE) than wet season counterparts. The typical dry season storm reached its peak intensity and size earlier in its life cycle compared to wet season cells. These cells exhibited updrafts in core precipitation regions (Z > 35 dBZ) to above the melting level, and persistent downdrafts aloft within precipitation adjacent to their cores. Moreover, dry season cells recorded more intense updrafts to earlier life cycle stages, and a higher incidence of strong updrafts (i.e., > 5 m/s) at low levels. In contrast, wet season storms were longer-lived and featured a higher incidence of moderate (i.e., 2–5 m/s) updrafts aloft. These storms also favored a shift in their most intense properties to later life cycle stages. Strong downdrafts were far less frequent within wet season cells aloft, indicating a potential systematic difference in downdraft behaviors between the seasons. Results from a stochastic parcel model suggest that dry season cells may expect stronger updrafts at low levels because of larger low level CAPE in the dry season. Wet season cells anticipate strong updrafts aloft because of larger free-tropospheric relative humidity and reduced entrainment-driven dilution. The enhanced dry season downdrafts are attributed to increased evaporation, dry air entrainment-mixing, and negative buoyancy in regions adjacent to sampled dry season cores.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

11 May 2023
Seasonal controls on isolated convective storm drafts, precipitation intensity, and life cycle as observed during GoAmazon2014/5
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023,https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Scott E. Giangrande, Thiago Biscaro, and John M. Peters

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-877', Anonymous Referee #1, 11 Nov 2022
  • RC2: 'Comment on egusphere-2022-877', Anonymous Referee #2, 18 Nov 2022

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-877', Anonymous Referee #1, 11 Nov 2022
  • RC2: 'Comment on egusphere-2022-877', Anonymous Referee #2, 18 Nov 2022

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Scott Giangrande on behalf of the Authors (19 Feb 2023)  Author's response   Manuscript 
EF by Sarah Buchmann (21 Feb 2023)  Author's tracked changes 
ED: Referee Nomination & Report Request started (11 Mar 2023) by Peter Haynes
RR by Anonymous Referee #1 (19 Mar 2023)
RR by Anonymous Referee #2 (27 Mar 2023)
ED: Publish as is (30 Mar 2023) by Peter Haynes
AR by Scott Giangrande on behalf of the Authors (03 Apr 2023)

Journal article(s) based on this preprint

11 May 2023
Seasonal controls on isolated convective storm drafts, precipitation intensity, and life cycle as observed during GoAmazon2014/5
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023,https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Scott E. Giangrande, Thiago Biscaro, and John M. Peters
Scott E. Giangrande, Thiago Biscaro, and John M. Peters

Viewed

Total article views: 512 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
358 140 14 512 4 3
  • HTML: 358
  • PDF: 140
  • XML: 14
  • Total: 512
  • BibTeX: 4
  • EndNote: 3
Views and downloads (calculated since 04 Oct 2022)
Cumulative views and downloads (calculated since 04 Oct 2022)

Viewed (geographical distribution)

Total article views: 505 (including HTML, PDF, and XML) Thereof 505 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 19 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Our study tracks thunderstorms observed during the wet and dry seasons of the Amazon basin using weather radar. We couple this precipitation tracking with opportunistic overpasses of a wind profiler and other ground observations to add unique insights into the upward and downward air motions within these clouds at various stages in the storm life cycle. The results of a simple updraft model are provided to give physical explanations for observed seasonal differences.