Preprints
https://doi.org/10.5194/egusphere-2022-819
https://doi.org/10.5194/egusphere-2022-819
17 Nov 2022
 | 17 Nov 2022

The impact of assimilating Aeolus wind data on regional Aeolian dust model simulations using WRF-Chem

Pantelis Kiriakidis, Antonis Gkikas, George Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis

Abstract. Land-atmosphere interactions govern the process of dust emission and transport. An accurate depiction of these physical processes within numerical weather prediction (NWP) models allows for better estimating the spatial and temporal distribution of the dust burden and the characterisation of source and recipient areas. In the presented study, the ECMWF-IFS (European Centre for Medium-Range Weather Forecast - Integrated Forecasting System) outputs are used to simulate two-month long periods in the spring and autumn of 2020, focusing on a case study in October. The ECMWF-IFS outputs are produced with and without assimilation of Aeolus quality-assured Rayleigh-clear and Mie-cloudy Horizontal Line of Sight (HLOS) wind profiles. The experiments have been performed over the broader Eastern Mediterranean and Middle East (EMME) region that is frequently subjected to dust transport, as it encompasses some of the most active erodible dust sources. Aerosol and dust-related model outputs (extinction coefficient, optical depth and concentrations) are qualitatively and quantitatively evaluated against ground- and satellite-based observations. Ground-based columnar and vertically resolved aerosol optical properties are acquired through AERONET sun photometers and PollyXT lidar, while near-surface concentrations are taken from EMEP. Satellite-derived vertical dust and columnar aerosol optical properties are acquired through LIVAS and MIDAS, respectively.

Overall, in cases of either high or low aerosol loadings, the model predictive skill is improved when WRF simulations are initialised with IFS meteorological fields in which Aeolus wind profiles have been assimilated. The improvement varies in space and time, with the most significant impact observed for the autumn months in the study region. Comparison with observation datasets saw a remarkable improvement in columnar aerosol optical depths, vertically resolved dust mass concentrations and near-surface particulate concentrations in the assimilated run against the control run. Reductions of model biases, either positive or negative, and an increase in the correlation between simulated and observed values were achieved.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

13 Apr 2023
The impact of using assimilated Aeolus wind data on regional WRF-Chem dust simulations
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023,https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
With the launch of the Aeolus satellite higher accuracy wind products became available. The...
Share